

NI 43-101

2025 MINERAL RESOURCE ESTIMATE UPDATE FOR THE MINTO PROPERTY, YUKON, CANADA

Location Description:

Centred at 62°37'05" N Latitude, 137°14'56" W Longitude
384625 E, 6945045 N, Zone 8
(NAD 83)

Submitted to:

Venerable Ventures Ltd. (to be renamed Selkirk Copper Mines Inc.)

Effective Date: April 7, 2025

Date Submitted: August 5, 2025

Qualified Persons:

Sue Bird, P. Eng. – Moose Mountain Technical Services

Travis O'Farrell, P. Eng. – Fuse Advisors Inc.

#210 1510-2nd St. North
Cranbrook, B.C. V1C 3L2 Canada
Tel: 250.489.1212
Email: sueb@moosemmc.com

DATE & SIGNATURE PAGES

Herewith, our report entitled “NI 43-101 2025 MINERAL RESOURCE ESTIMATE UPDATE FOR THE MINTO PROPERTY, YUKON, CANADA” dated August 5, 2025.

“signed and sealed”

Sue Bird, P. Eng.

Dated August 5, 2025

Moose Mountain Technical Services
Principal and V.P.

“signed and sealed”

Travis O’Farrell, P. Eng.

Dated August 5, 2025

Fuse Advisors Inc.

CERTIFICATE OF QUALIFIED PERSON – SUE BIRD

I, Sue Bird, P.Eng., am employed as a Geological Engineer with Moose Mountain Technical Services, with an office address of #210 1510 2nd Street North Cranbrook, BC V1C 3L2. This certificate applies to the technical report titled “NI 43-101 2025 Mineral Resource Estimate Update for the Minto Property, Yukon, Canada” that has an effective date of April 7, 2025 (the “technical report”).

- I am a member of the self-regulating Association of Professional Engineers and Geoscientists of British Columbia (#25007). I graduated with a Geologic Engineering degree (B.Sc.) from the Queen’s University in 1989 and a M.Sc. in Mining from Queen’s University in 1993.
- I have worked as an engineering geologist for over 30 years since my graduation from university. I have worked on precious metals, base metals and coal mining projects, including mine operations and evaluations. Similar resource estimate projects specifically include those done for Goldmining’s Whistler deposit in Alaska, Artemis’ Blackwater gold project, Ascot’s Premier Gold Project, Spanish Mountain Gold, all in BC; O3’s Marban and Garrison, gold projects in Quebec and Ontario, respectively, as well as numerous due diligence gold projects in the southern US done confidentially for various clients.
- As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101).
- I visited the Minto mine site from February 2nd through February 5th, 2021, for three days, and again on October 9th for one day.
- I am responsible for all Sections of the technical report, including Sections 1.1 through 1.8, 1.10, 1.11.1, 1.11.3, 1.11.4, 2 through 12, 14 through 24, 25.1, 25.2, 25.4, 26.1, 26.2, 26.4, 26.5, 27.
- I am independent of Selkirk Copper Mines Inc. as independence is described by Section 1.5 of NI 43–101.
- I have previously prepared a resource estimate for the Minto Deposit for Minto Explorations Inc. with an 11.2, date of March 31, 2021. I have had no previous involvement with Selkirk Copper Mines.
- I have read NI 43–101 and the sections of the technical report for which I am responsible have been prepared in compliance with that Instrument.

As of the effective date of the technical report, to the best of my knowledge, information and belief, the sections of the technical report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the technical report not misleading.

Dated: August 5, 2025

“Signed and Sealed”

Signature of Qualified Person
Sue Bird, P.Eng.

CERTIFICATE OF QUALIFIED PERSON – Travis O’Farrell

I, Travis O’Farrell, P.Eng., am employed as an Engineer with Fuse Advisors Inc., with an office address of 3123-595 Burrard Street, Vancouver, BC, V7X 1L7. This certificate applies to the technical report titled “NI 43-101 - 2025 Mineral Resource Estimate Update for the Minto Property, Yukon, Canada” that has an effective date of April 7, 2025 (the “technical report”).

- I am a member of the self-regulating Association of Professional Engineers and Geoscientists of British Columbia (#46026). I graduated with a Chemical Engineering degree (B. Eng) from McGill University in 2010.
- I have worked as a metallurgical process engineer for over 15 years since my graduation from university. My relevant experience includes process and metallurgical engineering for various gold and base metal concentrators and corporate metallurgy for various gold and base metal concentrators.
- As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101).
- I have not visited the property.
- I am responsible for Sections 1.9, 1.11.2, 13, 25.3 and 26.3 of the technical report.
- I am independent of Selkirk Copper Mines Inc. as independence is described by Section 1.5 of NI 43–101.
- I have had no previous involvement with Selkirk Copper Mines Inc.
- I have read NI 43–101 and the sections of the technical report for which I am responsible have been prepared in compliance with that Instrument.

As of the effective date of the technical report, to the best of my knowledge, information and belief, the sections of the technical report for which I am responsible contain all scientific and technical information that is required to be disclosed to make the technical report not misleading.

Dated: August 5, 2025

“Signed and Sealed”

Signature of Qualified Person
Travis, O’Farrell, P.Eng.

TABLE OF CONTENTS

1.0	Summary	14
1.1	Mineral Resource Estimate.....	14
1.2	Project Description	15
1.3	Property Location and Access	15
1.4	History	16
1.4.1	Drilling History.....	17
1.4.2	Production History	18
1.4.3	Exploration History.....	20
1.4.4	Property Ownership - Acquisition by Selkirk First Nation.....	21
1.5	Geology and Mineralization	21
1.5.1	Geological Setting.....	21
1.5.2	Mineralization	22
1.6	Deposit Types	23
1.7	Exploration and Drilling	23
1.8	Sampling, Preparation and Database Validations	23
1.9	Metallurgical Testing and Mineral Processing.....	24
1.10	Environment and Permitting	24
1.11	Recommendations.....	25
1.11.1	Exploration, Geology and Drilling	25
1.11.2	Metallurgical Recommendations	25
1.11.3	Database, Sampling and Verification Recommendations.....	26
1.11.4	Permitting Recommendations	26
2.0	Introduction	27
2.1	Qualified Persons.....	27
2.2	Units, Currency and Rounding.....	27
3.0	Reliance on Other Experts	29
3.1	Mineral Tenure	29
3.2	Surface Rights and other Agreements.....	29
3.3	Royalties and other Encumbrances	29
4.0	Property Description and Location.....	30
4.1	Claims	30
4.1.1	Minto/Def Block	32
4.1.2	Del Block.....	32
4.1.3	Bond Block.....	34
4.1.4	Pepper, Toe and Winter Blocks.....	35
4.1.5	Hun North Block (includes MEL claims)	38
4.1.6	Hun South Block	38
4.1.7	WS Block.....	38
4.2	Surface Rights, Legal Access and Obligations.....	42
4.2.1	Cooperation Agreement with the Selkirk First Nation.....	42
4.3	Royalties and other Encumbrances	42
4.4	Environmental Liabilities	44
4.5	Permits.....	44
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography.....	45

5.1	Accessibility	45
5.2	Climate.....	47
5.3	Physiography	47
5.4	Local Resources and Infrastructure	48
6.0	History.....	49
6.1	History – Minto Block	49
6.2	Minto Metals Corp. Activities	55
6.3	Exploration History of Regional Claim Blocks.....	61
6.3.1	History of Bond Block	61
6.3.2	History of Del Block	62
6.3.3	History of the Hun North Block	63
6.3.4	History of the Hun South Block	66
6.3.5	Hun South Soil Geochemical Surveying	69
6.3.6	History of the WS Block.....	74
6.3.7	Airborne Survey.....	74
6.4	Minto Production History	75
6.4.1	Minto Production History: 2007-2011	75
6.4.2	Minto Production History 2012 - 2018	76
6.4.3	Production History from 2019 to 2023	79
7.0	Geological Setting and Mineralization	85
7.1	Regional Geology	85
7.2	Property Geology.....	88
7.3	Structural Setting.....	93
7.4	Alteration.....	94
7.5	Mineralization.....	95
7.6	Property Geology, Other Minto Area Blocks	96
7.6.1	Bond Property	97
7.6.2	Pepper-Toe-Winter Property	97
7.6.3	MEL / Hun North Property	97
7.6.4	Hun South Property.....	97
7.6.5	DEL Property.....	97
7.6.6	WS Property	98
8.0	Deposit Types	99
9.0	Exploration	101
10.0	Drilling.....	102
11.0	Sample Preparation, Analyses and Security	103
11.1	Sampling Protocols and Principal Laboratories	103
11.1.1	Sampling, Security and Assaying Minto 2021-2022.....	103
11.1.2	Sampling, Security and Assaying Minto 2019-2020.....	107
11.1.3	Sampling, Security and Assaying Minto 2016-2018.....	109
11.1.4	Sampling, Security and Assaying MintoEx 2012-2015.....	110
11.1.5	Sampling, Security and Assaying 2011.....	110
11.1.6	Sampling, Security and Assaying 1971 – 2010.....	111
11.2	Minto QA/QC Summary.....	117
11.3	2005-2020 QA/QC Introduction	118
11.4	2005-2020 Blanks	119

11.5	2005-2020 Standards.....	123
11.5.1	ALS Cu	123
11.5.2	ALS Au	127
11.5.3	SGS Cu	129
11.5.4	SGS Au.....	130
11.6	2005-2020 Duplicates.....	131
11.6.1	Field Duplicates.....	132
11.6.2	Coarse Duplicates	133
11.6.3	Pulp Duplicates	136
11.7	2021-2022 QA/QC Introduction	139
11.8	2021-2022 Blanks	140
11.9	2021-2022 Standards.....	143
11.9.1	Bureau Veritas Cu	143
11.9.2	Bureau Veritas Au	144
11.9.3	Minto Cu	145
11.10	2021-2022 Duplicates	146
11.10.1	Coarse Duplicates	146
11.10.2	Pulp Duplicates	148
11.11	QAQC Conclusions and Recommendations	150
12.0	Data Verification.....	152
12.1	Site Visit	152
12.2	Data Audit.....	152
12.3	Drill Log Checks.....	153
12.4	Certificate Checks	153
12.5	Check Assays.....	154
12.5.1	2008 SGS Check Assays.....	154
12.5.2	2011-2012 Bureau Veritas Check Assays	155
12.5.3	2020 SGS Check Assays	157
12.6	Conclusions and Recommendations.....	158
13.0	Mineral Processing and Metallurgical Testing	159
13.1	Introduction.....	159
13.2	Historical Metallurgical Testwork.....	159
13.3	2021 Recovery Formula.....	163
13.4	Validation of 2021 Recovery Formulas.....	164
13.4.1	Copper Recovery Formula	164
13.4.2	Silver Recovery Formula	164
13.4.3	Gold Recovery Formula.....	164
13.5	2022-2023 Concentrate Grades	164
13.6	Metallurgical Assumptions	164
14.0	Mineral Resource Estimate.....	167
14.1	Key Assumptions and Data used in the Resource Estimate	169
14.2	Geologic Modelling.....	170
14.2.1	Mineralized Zones.....	170
14.2.2	Depth of Oxidation.....	171
14.2.3	Overburden.....	171
14.2.4	Waste Types.....	171

14.3	Assay Statistics and Capping.....	172
14.4	Compositing.....	182
14.5	Specific Gravity Assignment	183
14.6	Block Model Interpolations	184
14.7	Variography	185
14.8	Interpolation Search Criteria	187
14.9	Classification of Mineral Resources.....	191
14.10	Model Validation.....	193
14.10.1	Global Grade Validation.....	193
14.10.2	Grade-Tonnage Curves	193
14.10.3	Visual Comparisons.....	196
14.11	Reasonable Prospects of Eventual Economic Extraction	201
14.12	Factors That May Affect the Mineral Resource Estimate	203
14.13	Sensitivity of the Resource to Cut-off Grade	204
14.14	Risk Assessment	205
15.0	Mineral Reserve Estimates	206
16.0	Mining Method.....	206
17.0	Recovery Methods	206
18.0	Project Infrastructure.....	206
19.0	Market Studies and Contracts	206
20.0	Environmental Studies, Permitting and Social or Community Impact	206
21.0	Capital and Operating Costs	206
22.0	Economic Analysis.....	206
23.0	Adjacent Properties	207
24.0	Other Relevant Data and Information.....	208
25.0	Interpretation and Conclusions	209
25.1	Geology.....	209
25.2	Data Verification.....	209
25.3	Metallurgical Testwork.....	209
25.4	Resource Estimate	209
26.0	Recommendations	210
26.1	Sample Preparation, Analyses and Security	210
26.2	Data Verification.....	210
26.3	Metallurgy	210
26.4	Exploration and Resource.....	211
26.5	Exploration Program and Budget	212
27.0	References.....	213
	APPENDIX A - List of Claims	219

LIST OF TABLES

Table 1-1:	Total Mineral Resource Estimate with an Effective Date of April 7, 2025	14
Table 1-2:	Summary of Change in the Mineral Resource Estimate since 2021	15
Table 2-1:	Qualified Persons.....	27
Table 6-1:	Summary of Minto Project History	50
Table 6-2:	Summary of Significant Drill Intercepts from 2021-2022 Drilling.....	55
Table 6-3:	Minto Production History from 2007-2011	76
Table 7-1:	Comparison of Logging Details	90
Table 11-1:	Summary of Standards.....	105
Table 11-2:	Total QAQC Samples by Year (all labs).....	118
Table 11-3:	2005-2020 Blank Count and Failures	120
Table 11-4:	2005-2020 CRM Count and Failure ALS (Cu).....	124
Table 11-5:	Summary of Standards for ALS - Au.....	128
Table 11-6:	Summary of Standards for SGS - Cu.....	129
Table 11-7:	Summary of Standards for SGS - Au	130
Table 11-8:	Summary of Standards used from 2020-2022.....	143
Table 11-9:	Standards from Bureau Veritas - Au	144
Table 11-10:	Summary of Standards for Minto On-site Lab.....	145
Table 12-1:	Summary of 2024 Re-sampling of three Samples.....	152
Table 12-2:	Summary of Data Audit by Area	154
Table 12-3:	Bureau Veritas Check Assays 2011-2012 Results by Area	156
Table 12-4:	SGS Check Assay 2020 Results	157
Table 13-1:	Summary of Metallurgical Testwork.....	159
Table 13-2:	Historical Copper and Gold Recoveries and Concentrate Grades	162
Table 13-3:	Recovery and Concentrate Grade Estimates	166
Table 14-1:	Minto Mineral Resource Estimate – Total Open Pit and Underground	167
Table 14-2:	Minto Mineral Resource Estimate – Indicated	168
Table 14-3:	Minto Mineral Resource Estimate – Inferred	168
Table 14-4:	Summary of Drillhole and Assays used in the Minto Resource	169
Table 14-5:	Summary of Capping and Outlier Restriction – Minto East	176
Table 14-6:	Summary of Capping and Outlier Restriction – Ridgetop / Copper Keel.....	177
Table 14-7:	Summary of Capping and Outlier Restriction – Minto East	178
Table 14-8:	Summary of Capping and Outlier Restriction – Area 118.....	178
Table 14-9:	Summary of Capping and Outlier Restriction – Minto North	178
Table 14-10:	Summary Statistics of Capped Assays and Composites – Ridgetop – Cu	179
Table 14-11:	Summary Statistics of Capped Assays and Composites – Ridgetop – Au	179
Table 14-12:	Summary Statistics of Capped Assays and Composites – Copper Keel – Cu	180
Table 14-13:	Summary Statistics of Capped Assays and Composites – Copper Keel - Au	180
Table 14-14:	Summary Statistics of Capped Assays and Composites – Minto East – Cu.....	181
Table 14-15:	Summary Statistics of Capped Assays and Composites – Minto East - Au	181
Table 14-16:	Summary Statistics of Capped Assays and Composites – Area 118 – Cu	181
Table 14-17:	Summary Statistics of Capped Assays and Composites – Area 118 – Au	182
Table 14-18:	Summary Statistics of Capped Assays and Composites – Minto North – Cu and Au	182
Table 14-19:	Summary of SG within Mineralized Domains	184
Table 14-20:	Summary of SG outside Domains by Zone.....	184

Table 14-21:	Summary of Block Model Extents.....	185
Table 14-22:	Summary of Search Orientation by Domain – Ridgetop.....	188
Table 14-23:	Summary of Search Orientation by Domain – Copper Keel.....	189
Table 14-24:	Summary of Search Orientation by Domain – Minto East.....	190
Table 14-25:	Summary of Search Orientation by Domain – Area 118.....	190
Table 14-26:	Summary of Search Orientation by Domain – Minto North.....	191
Table 14-27:	Summary of Sample Selection Search Criteria by Interpolation Pass.....	191
Table 14-28:	Summary of Search Distance by Interpolation Pass and Area.....	191
Table 14-29:	Classification Parameters.....	192
Table 14-30:	Summary of Model Grade Comparison with De-Clustered Composites by Domain.....	193
Table 14-31:	Summary of Base Case Economic Inputs.....	202
Table 14-32:	Sensitivity of the Open Pit Resource to Cut-off Grade	204
Table 14-33:	Sensitivity of the Underground Resource to Cut-off Grade	205
Table 14-34:	List of Risks and Mitigations/Justifications	205
Table 26-1:	Recommended Exploration Budget	212

LIST OF FIGURES

Figure 4-1	Claim Blocks Comprising Mineral Properties Held by Minto Explorations Ltd	31
Figure 4-2	Claim Map, Minto/Def Bloc.....	33
Figure 4-3	Claim Map, Del Block.....	34
Figure 4-4	Claim Map, Bond Block	36
Figure 4-5	Claim Map, Pepper, Toe and Winter Block	37
Figure 4-6	Claim Map, Hun North Block.....	39
Figure 4-7	Claim Map, Hun South Block.....	40
Figure 4-8	Claim Map, WS Block	41
Figure 5-1	General location of the Minto Mine property	46
Figure 5-2	Minto Barge Crossing, Yukon River (Mercer and Sagman after SRK 2009.....	47
Figure 6-1	Drilling done by Minto Metals Corp. in 2021-2022.....	58
Figure 6-2	2022 Quantec Magnetotelluric (MT) Survey over the Minto Min property”	59
Figure 6-3	Regional Extent of Remote Sensing done across the Minto Mine Project	60
Figure 6-4	Prospecting Traverses, 2019 Program, Hun North	66
Figure 6-5	2019 Prospecting Traverses, Hun South Property	69
Figure 6-6	Copper Value Ranges, Soil Geochemical Surveying, Hun South	70
Figure 6-7	Silver Value Ranges, Soil Geochemical Sampling, Hun South	71
Figure 6-8	Gold Value Ranges, Soil Geochemical Surveying, Hun South	71
Figure 6-9	First Vertical Derivative Image and Copper, Gold Soil Geochemical Values, Hun South.....	71
Figure 6-10	First Vertical Derivative Image and Copper, Gold Soil Geochemical Value Ranges, Zone 2, Hun South Block	72
Figure 6-11	First Vertical Derivative Imagery and Copper, Gold Value Ranges, Zones 3 and 4, Hun South Block.....	73
Figure 6-12	Total Magnetic Intensity (TMI) Airborne Survey, Minto Mine Property	75
Figure 6-13	Production in 2020 – Actual compared to Budget	80
Figure 6-14	Production in 2021 – Actual compared to Budget	81
Figure 6-15	Production in 2022 – Actual compared to Budget	82
Figure 6-16	Production in 2023 – Actual compared to Budget. Production stopped May 11, 2023...83	83
Figure 6-17	Production in 2019-2023 – Actual compared to Budget	83
Figure 6-18	Production over the Life of Mine at Minto	84
Figure 7-1	Yukon Geological Terranes.....	86
Figure 7-2	Regional Geology, West-central Yukon.....	7-87
Figure 7-3	Local Geology, Minto Mine Area.....	88
Figure 7-4	K-feldspar megacrystic Granodiorite with subordinate Quartz Diorite	89
Figure 7-5	Partially Melted Host Lithologies	91
Figure 7-6	Property Geology Map, Minto/Def	92
Figure 7-7	Net Textured Bornite-chalcopyrite, Minto Main Deposit	96
Figure 7-8	Net-textured Bornite-chalcopyrite in Migmatite, Minto Main Deposit.....	96
Figure 11-1	Blank Performance for ALS - Cu	121
Figure 11-2	Blank Performance for ALS - Au	121
Figure 11-3	Blank Performance for SGS - Cu.....	122
Figure 11-4	Blank Performance for SGS - Au	123
Figure 11-5	Normalized Standard Performance for ALS - Cu.....	126
Figure 11-6	Standard performance for CDN-CGS-15 - Cu.....	126

Figure 11-7	Standard Performance for CDN-CGS-23 - Cu	127
Figure 11-8	Normalized Standard Performance for ALS - Au	129
Figure 11-9	Normalized Standard Performance for SGS - Cu	130
Figure 11-10	Normalized Standard Performance for SGS - Au	131
Figure 11-11	Field Duplicates - Cu	132
Figure 11-12	Field Duplicates - Au	133
Figure 11-13	Coarse Duplicates from ALS - Cu	134
Figure 11-14	Coarse Duplicates from ALS - Au	134
Figure 11-15	Coarse Duplicates from SGS - Cu	135
Figure 11-16	Coarse Duplicates from SGS - Au	136
Figure 11-17	Pulp Duplicates – ALS - Cu	137
Figure 11-18	Pulp Duplicates – ALS - Cu	138
Figure 11-19	Pulp Duplicates – SGS - Cu	138
Figure 11-20	Pulp Duplicates – SGS - Au	139
Figure 11-21	Blank Performance for Bureau Veritas - Cu	140
Figure 11-22	Blank Performance for Bureau Veritas - Au	141
Figure 11-23	Blank Performance for the Minto On-site Lab - Cu	141
Figure 11-24	Blanks from 2020-2022 - Cu	142
Figure 11-25	Blanks from 2020-2022 - Au	142
Figure 11-26	Normalized Standards for Bureau Veritas - Cu	144
Figure 11-27	Normalized Standards for Bureau Veritas - Au	145
Figure 11-28	Normalized Standards for Minto lab - Cu	146
Figure 11-29	Coarse Duplicates for 2021-2022 - Cu	147
Figure 11-30	Coarse Duplicates for 2021-2022 - Au	147
Figure 11-31	Coarse Duplicates for the Minto Lab from 2020 - Cu	148
Figure 11-32	Coarse Duplicates for Bureau Veritas from 2021-2022 - Cu	149
Figure 11-33	Coarse Duplicates for Bureau Veritas from 2021-2022 - Au	149
Figure 11-34	Pulp Duplicates for Minto lav from 2020 - Cu	150
Figure 12-1	2008 Check Assays – Cu	155
Figure 12-2	Scatter Plot 2011-2012 Bureau Veritas Check Assays - Copper in Minto East	156
Figure 12-3	Scatter Plot 2011-2012 Bureau Veritas Check Assays - Gold in Minto East	157
Figure 12-4	SGS Check Assays 2020 - Copper	158
Figure 14-1	Composite Long-Section looking Northeast of the Minto Mine Project Deposits	169
Figure 14-2	Domains Used for Interpolation and Current Underground	171
Figure 14-3	CPP of Cu Assay Grades – Ridgetop	172
Figure 14-4	CPP of Cu Assay Grades - Copper Keel	173
Figure 14-5	CPP of Cu Assay Grades - Minto East	173
Figure 14-6	CPP of Cu Assay Grades - Area 118	174
Figure 14-7	CPP of Au Assay Grades - Minto North	174
Figure 14-8	Histogram of Assay Lengths	183
Figure 14-9	Correlogram Model for a Group of Domains in Copper Keel – Cu	186
Figure 14-10	Correlogram Model for a Group of Domains in Copper Keel – Au	187
Figure 14-11	Illustration of Classification (2=Indicated, 3=Inferred)	192
Figure 14-12	Grade-Tonnage Curve Comparison for Cu – Ridgetop- Cu Keel	194
Figure 14-13	Grade-Tonnage Curve Comparison for Cu – Minto East Model	194
Figure 14-14	Grade-Tonnage Curve Comparison for Cu – Area 118 Model	195

Figure 14-15	Grade-Tonnage Curve Comparison for Cu – Minto North Model	195
Figure 14-16	Cu Grade - Model Compared to Composites – Section 6943720N - Ridgetop	197
Figure 14-17	Cu Grade - Model Compared to Assays – 6943840 N - Copper Keel	198
Figure 14-18	Cu Grade - Model Compared to Assays – 385260 E – Minto East	199
Figure 14-19	Cu Grade - Model Compared to Assays – 6944424 N - Area 118	200
Figure 14-20	Cu Grade - Model Compared to Assays – 6945948N - Minto North	201
Figure 14-21	3D View of the Resource Pits (blue) and NSR of Blocks Above CDN\$30/t	203

1.0 Summary

1.1 Mineral Resource Estimate

The Mineral Resource estimate with an effective date of April 7, 2025, is summarized in Table 1-1.

The following factors, among others, could affect the Mineral Resource estimate: commodity price and exchange rate assumptions; pit slope angles; assumptions used in generating the LG pit shell, including metal recoveries, and mining and process cost assumptions.

The QP is not aware of any environmental, permitting, legal, title, taxation, socio-economic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimate.

Table 1-1: Total Mineral Resource Estimate with an Effective Date of April 7, 2025

Type	Cutoff (CDN\$)	Class	ROM	In situ Grades						Metal		
			Tonnage (000)	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (Mlbs)	Au (Koz)	Ag (Koz)
Open Pit	\$30	Indicated	6,085	\$89.11	0.897	0.274	2.9	0.15	0.163	120.3	53.7	560.4
		Inferred	9,496	\$73.71	0.702	0.162	2.4	0.07	0.057	146.9	49.3	738.4
UG	\$80	Indicated	6,504	\$183.90	1.489	0.636	5.6	0.06	0.090	213.5	132.9	1,167.6
		Inferred	14,162	\$156.85	1.281	0.539	4.9	0.06	0.075	399.9	245.4	2,229.6
Total	Varies as Above	Indicated	12,588	\$138.08	1.203	0.461	4.3	0.10	0.125	333.8	186.6	1,728.0
		Inferred	23,658	\$123.48	1.048	0.387	3.9	0.07	0.068	546.8	294.7	2,968.1

Notes to Table 1-1:

1. The MRE has been completed by Sue Bird of Moose Mountain Technical Services (MMTS).
2. Resources are reported using the 2014 CIM Definition Standards and were estimated using the 2019 CIM Best Practices Guidelines.
3. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.
4. Metal prices of US\$2000/oz Au, US\$23/oz Ag, US\$4.00lb Cu.
5. For the NSR calculations: a currency exchange rate of 0.72 US\$ per \$CA; 95% payable Cu, 88% payable Au and 70% payable Ag; offsite costs (refining, transport and insurance) of US\$256.18/dmt; royalties of 1.5% NSR.
6. Recoveries are as follows:
 - a. CuRec = 95.5%+1.07*CU%-113*ASCu/TCu, with a maximum of 98%
 - b. AuRec = 20.99*Augpt + 62.01, with a maximum of 95%
 - c. AgRec = 69.4+1.9*Aggpt, to a maximum of 85%
7. These inputs result in the following NSR and CuEq equations:

$$\text{NSR} = \text{CA\$4.73} * \text{CuRecov} * \text{Cu\%} * 22.0462 + (\text{CA\$2400.60} * \text{AuRecov} * \text{Augpt} + \text{CA\$21.45} * \text{AgRecov} * \text{Aggpt}) / 31.10348$$

$$\text{CuEq} = \text{NSR} / (\text{Cu} * \text{CuRecov} * 22.0462)$$
8. The Mineral Resource has been confined by a “reasonable prospects of eventual economic extraction” pit or underground shape using the 100% base case NSR for the Ridgetop and Area 118 open pits and by a confining shape for the underground.
9. Mining costs are CA\$4.10/tonne for open pit, CA\$45.42/tonne for underground, Processing costs are CA\$30/tonne milled, and G&A costs are CA\$20.81/tonne milled.
10. Pit slope angles are assumed at 45°.
11. The specific gravity of the deposit has been assigned based on domain as between 2.578 and 2.849 based on sg measurements in the Minto deposit.
12. Oxide Ratio = (ASCu) / (Total Copper)
13. Numbers may not add due to rounding.

The change in the resource since the 2021 Mineral Resource Estimate (MRE), accounting for the production from 2021-2023 is summarized in Table 1-2. This shows an increase in Indicated Cu metal of 17%, of Indicated Au metal of 21% and of Indicated Ag metal of 27%. Inferred metal increases are 52%, 42% and 57% for Cu, Au and Ag respectively.

The primary reasons for the large increase in the MRE are due to:

- an increase in metal prices;
- restrictions on pit size removed allowing for additional open pit resources at a lower cutoff;
- enhanced mineralization shapes which better capture and differentiate between the open pit; and underground mineralization;
- additional drilling since the 2021 MRE.

Table 1-2: Summary of Change in the Mineral Resource Estimate since 2021

Type	Cutoff (CDN\$)	Class	Percent Change since 2021 Resource (%)								
			ktonnes	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	Cu (000lbs)	Au (oz)	Ag (oz)
Open Pit	\$30	Indicated	75%	12%	-23%	-24%	-14%	-44%	35%	33%	51%
		Inferred	378%	5%	-33%	-43%	-20%	-75%	222%	174%	284%
Underground	\$80	Indicated	12%	38%	-7%	4%	4%	-7%	4%	14%	16%
		Inferred	28%	39%	-4%	1%	1%	-25%	23%	30%	30%
Total	Varies as Above	Indicated	32%	19%	-18%	-13%	-10%	-19%	12%	18%	24%
		Inferred	82%	16%	-19%	-22%	-14%	-42%	48%	42%	56%

1.2 Project Description

The Minto Property comprises 164 Yukon quartz mining claims covering 2,760 hectares (6,817 acres), centered at 62°37'05" N Latitude, 137°14'56" W Longitude, within the Whitehorse Mining District. Six additional claims blocks (Bond, Pepper-Toe-Winter, HUN North, HUN south, Del, WS) encompassing 1184 Yukon quartz mining claims covering an additional ~24,000 hectares form the regional Minto project land package.

1.3 Property Location and Access

The Minto Mine is located within a package of Category A settlement land held by the Selkirk First Nation (“SFN”), and within the traditional territory of the SFN.

The property is located west of the Yukon River, about 20 km WNW of Minto Landing, the latter on the east side of the river. The property is accessible by Yukon Highway 2 to Minto Landing. In summer months, Minto Explorations Ltd. (MintoEx) operates a barge connecting the landing with an all-weather gravel road extending 27 km from the west bank to the mine site. In winter, the crossing is accessed by an ice bridge. There is typically a 6 to 8-week period associated with each freeze-up and break-up, where access across the river is not possible. During freeze-up and break-up, access is provided by chartered air services from Whitehorse to an airstrip on the property.

The property is serviced by a spur of the main Yukon electrical grid. Basic fuel and grocery services, and an available workforce are located at the villages of Pelly Crossing and Carmacks, both along the North

Klondike Highway. The property is located approximately 250 road-km north of the City of Whitehorse, the capital city of Yukon, which is a full-service community of about 32,000.

1.4 History

The present Minto property was first staked in 1971. In 1973, United Keno Hill Explorations (UKHM) discovered mineralization on the adjoining DEF claims, leading to the formation of a joint venture with the holders of the DEF claims. This joint venture completed core drilling programs in 1973 and 1974, targeting the “North Zone”, and, in 1974, constructed a winter road to an existing airstrip on the property.

In 1993, MintoEx acquired the Minto and DEF claims and were consolidated into the Minto Property.

In 1996, MintoEx completed a feasibility study and, in April 1997, a final screening report on the Environmental Assessment of the proposed project was released, followed in 1998 by the issuance of a Type A water use licence. Also, in 1997, a Co-operation Agreement (CA) with the Selkirk First Nation towards the development and operation of the Minto Project was signed.

In June 2005, the Sherwood Mining Corporation (Sherwood) acquired ownership of the Minto Project. MintoEx continued as the operator as a 100% owned subsidiary of Sherwood. In July 2005, Sherwood released an NI 43-101 compliant resource estimate for the Main Zone.

Also, in 2007, Sherwood Copper produced the first copper-gold concentrates and expanded the mill to handle 2,400 tpd. In July, Sherwood Copper delivered its first concentrate shipment to the Skagway, Alaska port, and announced it had reached commercial production on October 1, 2007.

In September 2008, Sherwood Copper entered into an agreement with the Capstone Mining Corporation to create a mid-tier copper producer retaining the name of Capstone Mining Corp (Capstone). In November, the merger was completed, and the mine was officially connected to Yukon Energy’s electrical grid.

In November 2008, Sherwood Copper, MintoEx and Kutcho Copper Corp. entered into an agreement with Silverstone Resources Corp. (Silverstone) whereby MintoEx would sell to Silverstone all payable gold and silver recovered from the Minto Mine. In May 2009 Silverstone was purchased by the Silver Wheaton Corporation.

Capstone Mining Corporation continued to operate the Minto Mine until 2018, when Capstone ceased production transitioning to care and maintenance due to low copper prices. In 2019, Pembridge Resources PLC purchased the Minto Mine restarting production and initiating a surface and underground exploration drill program.

In 2021, following a restructuring, the Minto property was pushed into a Pembridge subsidiary under the name Minto Metals. On May 12, 2023, Minto Metals announced they had ceased all mining operations, relinquishing care and control of the Minto Mine site. The Yukon Government stepped in to manage environmental concerns and suspended all activities authorized under the Quartz Mining License, declaring the Minto Mine in Closure (Powell, 2023, Letter to Minto Metals CEO from YK Government). Price Waterhouse Coopers was appointed receiver during the asset sale and eventual

liquidation. Since May 2023 until the time of this report, only surface reclamation activities have been conducted.

After a protracted process, on June 18, 2025, the Selkirk First Nation successfully acquired the Minto Project, securing the mineral rights, water licenses, permits and physical assets of the Minto Mine as well as regional claim blocks. This marks the first instance an Indigenous government has taken full legal ownership of a mine in Canadian history.

On June 30, 2025, Venerable Ventures announced a binding Letter of Intent, with an affiliate of Selkirk First Nation to launch Selkirk Copper Mines Inc., a new venture which will acquire a 100% interest in the Minto copper-gold mine and regional properties.

1.4.1 Drilling History

In 2006, Sherwood Copper completed infill drilling at the Main Zone and exploratory drilling to the north and west of it, and on “Area 2”. Sherwood Copper also began mill construction and pre-stripping of the Main Zone. In 2007, Sherwood completed another core drilling program, which resulted in the discovery of significant copper-gold mineralization at Area 118, Copper Keel, Airstrip and Ridgetop zones.

In 2009, MintoEx completed a core drilling program focusing on infilling Ridgetop and Area 2 deposits leading to discovery of the Minto North and Minto East zones. In 2010, the Minto East Deposit was defined, the copper-gold resources for Area 2/ Area 118 were expanded, and drilling led to discovery of the Wildfire and Inferno prospects, now part of Minto East 2. In 2011, the Copper Keel and Wildfire resource sub-domains were defined and incorporated into the larger Minto South Deposit (MSD).

The 2019-2020 infill-drilling campaign comprised 23,321 m of surface and underground diamond drilling of NQ core, targeting the Copper Keel West, North, South, Minto North 2 and Minto East deposits. The surface drilling comprised 62 holes totaling 16,485 m targeting the Copper Keel West, Copper Keel North, Copper Keel South, and Minto North 2 deposits. The underground infill-drill program mainly targeted the Copper Keel West and Copper Keel North lenses. Additional drilling was also completed on the Minto East and Copper Keel Main production areas. A total of 6,835 m in 75 underground holes was completed.

At the Copper Keel Main deposit, 23 drill holes totaling 979 m of underground drilling were completed, targeting the Copper Keel Main lens to obtain geo-mechanical information for mine design. At the Copper Keel West deposit, five holes were drilled for a total of 2,211 m, targeting gaps of coverage in the lens. The underground diamond drilling program consisted of 2,618 m in 12 holes. An additional 2 condemnation drill holes totaling 156 m were also completed from the 5600 ramp.

At the Copper Keel North deposit, 4,848 m in 11 surface drill holes were completed with the objective of expanding and defining the lens towards the north. Surface results indicate the Copper Keel North deposit lies to the north of the Copper Keel Main area, about 100 m to 150 m below it, and remains open to the north. Due to high metal values returned from surface drilling, the underground drilling focused on testing for the extension of the deposit to the north. The underground program comprised 6 drill holes, totaling 1,161 m.

The Copper Keel South lens, located southwest of the Copper Keel Main mining area, underwent surface diamond drilling to test for mineralization southwest of the Copper Keel Main lens. The program

comprised 3,816 m in 15 drill holes and confirmed that the Copper Keel South deposit comprises a series of northwest trending stacked lenses. The largest and uppermost lens dips gently eastwards, and likely represents the western continuation of the Copper Keel Main deposit.

The Minto North 2 deposit is located southeast of the Minto North deposit, which was the highest-grade deposit on the property and is now mined out. Drilling at Minto North 2 comprised 5,609 m in 31 holes, completed on 25 m to 30 m drill spacings. The main purpose of the 2020 drill program, staged in two phases, was to delineate the Minto North 2 deposit. Phase 1 results show that this deposit is a flat-lying, shallow lens which lies ~175 m below surface and 90 m east from the Minto North deposit. Phase 2 targeted the extension of the deposit to the south and east, results of which indicate it extends to the south and is cut off by a major NNW-trending fault along its east margin. Historic drill holes located on the east side of the fault intersected mineralization at depth, potentially representing the offset and down-dropped eastern portion of the Minto North 2 deposit.

At the Minto East target, an underground diamond drilling program comprising 1,565 m in 30 holes was completed. The objective was to test the lateral and upward continuity of the Minto East lens to the south. Two additional holes totaling 355 m were also completed, targeting the pillars of the Minto East 490 level. The objective was to acquire geological and geotechnical information for future pillar recovery.

In 2021 Minto Metals embarked on a five-year exploration plan to expand its resource base, aiming to extend the Minto Mine's life-of-mine (LOM) to 12–15 years while advancing new exploration targets. That year, Minto Metals executed a surface (8,460 m) drill program focussed on targeting north of the Minto Main pit and an underground infill program (8,285 m) centred on Copper Keel zone. This program successfully discovered a new high grade lens west of the Minto North pit. The discovery hole, 21EXP003, intercepted 28.0 m of 1.58% Cu, 1.29 g/t Au, and 8.11 g/t Ag, including a high grade zone of 3.5% Cu, 3.34 g/t Au and 19.2 g/t Ag over 9 m. In 2022, Minto Metals Corp. continued advancing exploration and development activities at the Minto Mine. Securing of a 10-year Class 4 Quartz Mining Land Use Permit from the Yukon Government enabled the execution of its first significant exploration campaign since 2010.

The surface exploration drilling program totaled 23,249 m, complemented by a 19,309 m underground infill drilling program designed to upgrade resource confidence and optimize mine planning. The results from follow-up and step-out drilling at Minto North has confirmed the existence of a consistent, robust mineralized system west of the historical Minto North Pit. Drill hole 22EXP045 cut 1.91% Cu over 34.59 m, including 4.80% Cu over 10.10 m drill width from 194.19 m downhole in follow-up, step-out drilling from drill hole 21EXP003 that cut 1.58% Cu over 28 m.

Surface and regional exploration was planned to continue in 2023, but was never completed following the closure of the Minto Mine site.

No exploration activities were completed between 2023 and 2025.

1.4.2 Production History

Following the official announcement of production on October 1, 2007, production and recovery rates increased through 2008 and 2009, but were cut back in 2010 due to constraints in the tailings filtration facility. In 2012, mining and stripping of the Area 2 pit was ongoing, with a slight decrease in production.

In October, an amendment to Minto's Water Use License (WUL) was approved, and development of the underground ramp to access future underground workings at Area 2 commenced.

In 2013 Capstone submitted to the Yukon Environmental and Socioeconomic Assessment Board (YESAB) an operating plan for all remaining mineral reserves as identified in the 2012 Phase V/VI Pre-Feasibility Study (PFS).

In 2014, Capstone completed mining of the Area 2 pit, then moved on to mining the M-Zone and the Area 118 open pit. Mining of both of these was completed, and underground operation of the Area 118 deposit commenced.

In 2015, operations focused on underground mining in Area 118, as well as stockpiles. Stripping commenced on the Minto North deposit which began to be extracted in December.

Open pit mining ceased in April 2018; the same month underground development of the Minto East deposit commenced. In October 2018 Capstone commenced immediate placement of the mine on care and maintenance,

In June 2019 Pembridge entered into definitive "Share purchase Agreement" (SPA) with Capstone and closed the acquisition of 100% of MintoEx, and the care and maintenance period ended, and the restart process commenced. Operations at Minto resumed in October 2019. All production was from the Minto East deposit. At the end of Q4, mining of Minto East was expected to be completed by Q2 of 2020, at which point operations would move on to the Copper Keel deposit (LSE announcement, Jan 9, 2020). The total capital expenditure was CA\$2.5 million in sustaining capital.

In 2020, Production focused on mining from Minto East and Copper Keel Main - Zone 57. Between August and November, Minto East and Copper Keel Main contributed equal amounts to total ore production from the mine with a steep drop from Minto East in December where Zone 57 became the primary zone producing ore. As Zone 57 became the primary source of ore in December, development began to ramp up in Zone 56 and 62 to prepare for 2021. At the end of the 2020 fiscal year, the mine processed 629,078t and produced ~17.8 million pounds of payable copper, ~7,700 ounces of gold, and ~67,500 ounces of silver. Mill recoveries were 93.4%, 74.2% and 77.9% for copper, gold and silver respectively.

In 2021, ore production for the year was provided by Minto East, Zone 57, and Zone 62. Zone 57 accounted for 90% of total ore production for the year while the remainder was produced from the other zones. At the end of the 2021 fiscal year, the mine processed 903,498dmt and produced 26 million pounds of payable copper, 11,783 ounces of gold, and 135,354 ounces of silver. Mill recoveries were 93.2%, 74.0% and 83.1% for copper, gold and silver respectively. This was a notable increase in production from 2020. The primary mining zones in 2022 were within Copper Keel Main, Minto East 2, and A2. Copper Keel Main consisted of Zone 35, Zone 56, Zone 57, and Zone 62 for the year. At the end of the 2022 fiscal year, the mine processed 878,380 dmt and produced 28.9 million pounds of payable copper, 12,168 ounces of gold, and ~136,000 ounces of silver. Mill recoveries were 94.1%, 73.9% and 83.5% for copper, gold and silver respectively. This showed an increase in production from 2021 regardless of a poor Q2 and Q4. In Q2, there was an 8-week mill shutdown due to significant snow melt 417% above normal.

In 2023, average monthly production decreased significantly from the previous year. The primary mining zones were within Copper Keel Main, A2, and 118. A lack of development in 2022 leading to decreased production paired with increased financial securities mandated by the Yukon Government were challenges leading to the mine closure on May 11, 2023.

1.4.3 Exploration History

Exploration from 2012 onwards was limited to delineation core drilling and related activities, and no significant surface or underground exploration occurred from 2013 through 2018.

In September 2019 MintoEx contracted Pioneer Aerial Surveys Ltd. (Pioneer) to conduct an airborne magnetic survey (UAV-MAGTM) covering the Minto property. The surveyed area covered approximately 24 km² and included the mine site and its surrounding areas. Flight lines were flown at an orientation of 065° at a 50 m line spacing, and tie lines were flown at a 500 m spacing and at a 335° orientation. A total of 554.71-line kms were flown, including 480.59 km of flight lines and 74.11 km of tie lines. Final deliverable products from Pioneer included Total Magnetic Intensity (TMI) and 1st Vertical Derivative imagery. The tight spacing of survey lines using the drone platform allowed for the collection of high-resolution magnetic data. This high-resolution data allowed for more accurate targeting of anomalous magnetic features, potentially associated with mineralization.

At the Minto Mine property, the TMI map clearly indicates the WNW-trending fault separating the Minto pluton from Carmacks Group basaltic rocks to the south. A second WNW-trending structure extends across the central property area, marking the northern limit of the Minto mine deposit area. To the north of this, a series of strong northwest trending magnetic “high” features mark regional stratigraphic trends. Several magnetic high anomalies may indicate targets for “Minto-style” mineralization. The 1st Vertical Derivative imagery supports the TMI imagery and indicates strong magnetic contrasts along the southern fault and the stratigraphic setting in the northeastern area.

In late 2019, a soil geochemical survey was completed across four grids, or “zones”, on the Hun South property, centered on magnetic anomalies identified from airborne drone magnetic surveying. All grids comprised a 50 m line spacing and 50 m station spacing. A total of 1,810 soil samples targeting the C-horizon and covering 5.54 km² were collected.

At Zone 1, the two most notable anomalous areas lie in the northeast and southeast corners respectively of the target area. The northeast area shows elevated Cu values from 25 to 100 ppm, correlating with an oval magnetic “high” anomaly. The southeast area outlines a larger area of anomalous Cu values between 25 to 50 ppm, with weakly elevated Au and Ag values. 1st Vertical derivative imagery indicates a WNW trend of stratigraphy as well as NNW trending features that may indicate structural occurrences.

At Zone 2, sampling revealed a WNW trending area of weakly to moderately elevated Cu values, associated with weakly elevated Au and Ag values, in the central property area. This occurs along a strong “low” feature returned from 1st Vertical Derivative imagery.

Geochemical sampling on Zone 3 revealed a 1,000 m by 500 m long NNE-trending Cu anomaly in the eastern area, with Cu values from 25 to 50 ppm, and Ag values between 75 and 150 ppb. The 1st Vertical Derivative imagery revealed WNW trending alternating high and low features, likely indicating stratigraphic trends, and also an NNE trending “low” feature coincident with a topographic low along

the western margin of the Cu anomaly. Geochemical sampling on Zone 4, directly south of Zone 3, returned intermittent weakly elevated Cu values from 25 to 100 ppm along the north flank of an ESE trending valley. 1st Vertical Derivative imagery indicates the stream is coincident with a linear “low” feature, and that a more pronounced “low” feature is oriented parallel to this along the central axis of the grid. Two anomalous gold values of 33.9 ppb and 20.1 ppb respectively were returned proximal to the stream.

As part of the renewed exploration efforts by Minto Metals, in 2022 Quantec Geoscience Ltd. (Quantec) was commissioned to conduct a SPARTAN MT survey, a deep-penetrating Magnetotellurics ("MT") survey over the Minto Mine Property. The goal for the MT survey was to extend the geophysical coverage for the Minto Mine Property to depths below the extents of previous geophysical surveys, diamond drilling and current mining infrastructure to assess the potential for additional economic mineralization. Quantec completed the survey, consisting of a total of 184 SPARTAN MT sites, between July 10, 2022 and August 28, 2022 with results received by the Company in late November 2022.

Lastly, as part of the first, district-wide evaluation, a remote sensing survey was carried out across the broader Minto Cooper Belt area. Exploration Mapping, out of Dever, CO supervised the 2,599 km² Worldview-3 Spectral mapping satellite survey over the Minto Properties.

1.4.4 Property Ownership - Acquisition by Selkirk First Nation

After months of negotiations with the receiver and the Government of Yukon, the Selkirk First Nation completed its purchase of the Minto Mine through a two-step process in the Yukon Supreme Court. The purchase was finalized on June 18, 2025, at an aggregate cost of approximately \$6.1 million. Selkirk First Nation and Venerable Ventures Ltd. Signed a binding Letter of Intent effective June 29, 2025, to launch a new venture named Selkirk Copper Mines Inc.

On July 3, 2025, 1,348 quartz minerals claims comprising the 7 claim blocks were transferred to 843093 Yukon Inc., a wholly owned subsidiary of the Selkirk First Nation.

1.5 Geology and Mineralization

1.5.1 Geological Setting

The Minto property is located within the Minto Copper Belt (formerly known as the Carmacks Copper Belt) (Kovacs, 2018), a 42 km long, NW-trending series of copper-gold deposits and occurrences in central Yukon. These deposits are hosted within deformed and metamorphosed inliers engulfed by the intrusions of the Late Triassic to Early Jurassic Minto pluton (204-195 Ma) (Colpron et al., 2015).

The Minto/Def property area is underlain by the southern margin of the 204 – 195-million-year-old (Ma) Minto pluton. The Minto pluton consists of medium to coarse grained granite, biotite-hornblende granite, granodiorite and quartz monzonite. The south boundary lies in east-west trending normal fault contact with mafic to intermediate volcanic rocks and sedimentary rocks of the Late Cretaceous Carmacks Group. The east boundary lies in NNW trending fault contact with Lewes River Group, Povoas Formation augite phryic basalt, volcaniclastic rocks, and hornblende gabbro (Hart and Radloff, 1990). Lewes River Group rocks comprise part of the northern extent of the Whitehorse Trough, representing the northern limit of the Stikine Terrane, or “Stikinia”.

Hypogene copper sulfide mineralization is hosted within variably deformed, metamorphosed, and migmatized Late Triassic rocks that are engulfed by the undeformed and unmineralized felsic intrusive phases of the Minto pluton (Kovacs, 2018). Copper sulfide mineralization is restricted to the metamorphic rocks and occurs in three distinct forms: disseminated chalcopyrite ± pyrite, foliaform chalcopyrite, and net-textured bornite-chalcopyrite ± digenite (Kovacs, 2018). Contacts between foliated and massive phases are typically very sharp and lack chilled margins. Oxidation and alteration of primary mineralization indicates near-surface extensions of mineralized zones. Drill intercepts of copper-mineralized cobbles indicate that, by the Cretaceous period, “Minto-style” mineralization was exposed, eroded and re-deposited in sedimentary strata.

Both brittle and ductile deformation occur in the Minto Mine vicinity. Amphibolite facies ductile deformation affected the metamorphic rocks, evident by the alignment of hornblende and biotite grains forming foliation, and by the segregation of quartz and feldspar grains, forming a gneissic texture in areas of higher strain. Deformation zones occur as sub-horizontal horizons traceable for more than 1,000 m and are commonly stacked in parallel to sub-parallel sequences. The felsic intrusive rocks are generally undeformed, although moderate to strong foliation is locally developed near the contact with the metamorphic inliers (Kovacs, 2018).

Late faulting and brittle fracturing occur throughout the property, significantly affecting the economic potential. The Minto Creek fault (MC Fault), a steeply north-east dipping fault, roughly bisects the Minto Main deposit into north and south blocks. The north block has moved upwards and to the left of the south block, although displacement appears minimal. To the north, the roughly east-west striking, north-northwest dipping DEF fault marks the northern limit of the Minto Main deposit. The sense of movement may be similar to the MC Fault, but with a significant inferred displacement. Elsewhere, the boundary between the Area 2 and Area 118 deposits is a NW-SE striking, northeast-dipping fault, showing significant displacement.

Pervasive potassic (biotite ± magnetite) alteration of the metamorphic host rocks is associated with hypogene copper mineralization (Kovacs, 2018). Chloritic and/or hematitic fracturing in some areas locally host visible gold, suggesting this late structural/hydrothermal event may be economically significant. There are no veins associated with hypogene copper mineralization; however, a few late chlorite-hematite-carbonate veinlets are locally present indicating post-mineral hydrothermal alteration.

1.5.2 Mineralization

Four major deposits have been delineated and/or have undergone mineral extraction: the Minto Main, Minto East, Minto North and Minto South deposits. Area 2, Area 118, Copper Keel and Wildfire resource sub-domains are now considered to be continuous, comprising the Minto South deposit.

A north-northwest trend of copper deposits and prospects is evident from the alignment of the known deposits and also regionally (extending over 42 km). The trend includes the Carmacks Copper Cu-Au-Ag deposit and the Stu prospect. Copper grades increase progressively towards the north within the trend.

The primary hypogene minerals are chalcopyrite, bornite, chalcocite, and minor pyrite. Copper sulfide minerals occur mainly as disseminated grains, foliaform stringers, and net-textured domains. Sulfide mineral content tends to increase with ductile deformation. Native gold, electrum, and gold tellurides mainly occur as inclusions in bornite. Coarse free gold is locally found along late chloritic fractures, likely

resulting from secondary enrichment from a hydrothermal event. Hypogene sulfide mineralization is almost always associated with biotite alteration and magnetite.

A crude zonation occurs from west to east at the Minto Main deposit, with bornite predominating in the west, transitioning to a thicker, lower grade chalcopyrite-bearing zone in the east. Both the Minto North and Minto East deposits show a similar zonation.

At Area 2, Area 118 and Copper Keel resource subdomains of the Minto South deposit, ductile deformation appears to be more developed, and mineralization is characterized by disseminated grains and minor foliaform stringers. The assemblage consists mainly of chalcopyrite-bornite-magnetite and minor pyrite. Mineralization is more homogenous and consistent than at the Minto Main and Minto North deposits, where mineralization is dominated by net-textured domains of bornite-chalcopyrite.

The predominant alteration assemblage associated with hypogene copper mineralization in the Minto mine area is a pervasive, potassic alteration, characterized by elevated biotite and magnetite content, within the horizontal mineralized zones, present in all Minto deposits. Pervasive silification tends to coincide with areas of higher-grade mineralization.

Copper oxide mineralization resulting from supergene alteration processes represents either the erosional remnants of foliated horizons above the deposits, or the vertical remobilization of copper along late brittle faults and fracture zones from underlying copper sulfide zones. The oxide mineral assemblage consists of chalcocite, malachite, minor chrysocolla and azurite and rare native copper. Mineralization occurs as fracture-fill and joint coatings and, to a lesser extent, interstitially to rock-forming silicate minerals. Oxidation is related directly to the depth of the water table, typically less than 30 m, and is a minimal component of the Minto Main zone, due to its depth.

1.6 Deposit Types

The Minto deposit has been modified by deformation, amphibolite facies metamorphism, and localized metamorphic anatexis (Kovacs, 2018). Recent studies of the geological setting and mineralization of the Minto deposits by Kovacs (2018) have determined that mineralization may be hosted by 215-212 Ma Late-Triassic Povoas Formation volcanic rocks subsequently engulfed into the 198 Ma Minto pluton. The Minto deposits are metallogenically related to the Carmacks Copper deposit 42 km to the south, indicated by their spatial relation and deformed, metamorphosed, and partially oxidized nature. A recent study integrated the two deposits into a single genetic model and proposed that the Minto deposit is the more highly migmatized analogue of the Carmacks Copper deposit (Kovacs, 2018). The same study also concluded that the two deposits represent Late Triassic porphyry deposits hosted within Late Triassic volcanic rocks of Stikinia that have undergone amphibolite facies metamorphism, deformation, and partial melting during entrainment within the Minto Pluton (Kovacs, 2018).

1.7 Exploration and Drilling

There has been no exploration or drilling activities done by the Issuer.

1.8 Sampling, Preparation and Database Validations

The analysis of the small sample set of field duplicates in Minto East implies a potentially significant low bias to the gold samples in the assay database. It is suggested that Minto investigate this finding with re-assay of core and check assays.

CRM and check assay results from 2019 and 2020 indicate that there may be a negative bias to silver values. It is recommended to continue to monitor this potential bias; and

There is a possible high bias in the copper results in years 2009 through 2011 indicated by the CRM results. It is recommended further check assays of pulps and quarter-core samples be conducted to investigate.

1.9 Metallurgical Testing and Mineral Processing

The metallurgical testing of the Minto Mine mineralized material has been extensive over the years since 2007 when the processing plant was commissioned. The primary mineralized material is typically a mixture of chalcopyrite and bornite, with little other sulfides allowing the plant to achieve high recovery with a very high concentrate grade (35 – 40% Cu). There is also a component of mineralized material that consists of various quantities of oxidized copper minerals which do not recover well in the flotation circuit.

The mineralized material is classified as either “sulfide” or “POX” (partially oxidized) based on the ratio of acid soluble copper grade to total copper grade. Mineralized material is considered POX if the oxide ratio is above 20%. There are several opportunities that can be investigated for processing oxidized copper mineralization which could include further investigation of flotation options or the recovery that could be achieved by leaching and SX-EW for oxidized zones.

The recent operating data was collated and reviewed to develop recovery formulas for copper, silver and gold.

The copper recovery formula developed is:

$$\text{Copper Recovery (\%)} = 95.5 + 1.07 * (\text{Cu}_{\text{tot}} \%) - 113 * (\text{Oxide Ratio})$$

Where:

$\text{Cu}_{\text{tot}}\%$ is total copper grade in percent (2% = 2)

Oxide ratio is the ratio of oxide copper (in percent) to total copper (in percent)

In cases where there is low oxide ratio and higher total copper grades, the recovery formula is capped at 98%.

The data analyzed suggested that the silver recovery formula was based solely on the silver grade in grams per tonne without an oxide modifier. The silver recovery formula is also capped, this time at 85%.

$$\text{Silver Recovery (\%)} = 69.4 + (1.9 * \text{Silver Grade})$$

The gold recovery formula, based on the gold assay in grams per tonne is:

$$\text{Gold Recovery (\%)} = 62.01 + (20.99 * \text{Gold Grade})$$

1.10 Environment and Permitting

Several government agencies, both federal and territorial, are involved in reviewing, assessing, authorizing, and monitoring Minto Mine and surrounding property. The major instruments or authorizations include Type A Water Use License QZ14-031 issued by the Yukon Water Board, Quartz Mining License QML-0001 issued by the Department of Energy Mines and Resources, Yukon Government and a Class 4 Mining Land Use (LQ00565) approval, supporting surface exploration

activities within the licensed area. The project and its expansion plans have been subject to numerous environmental and socio-economic assessments prior to these licenses being issued and amended. The project is also subject to numerous other regulations and permits. The Minto Mine is located within a block of Category A land (SFN R-6A) held by the SFN. As the landowner, SFN is Minto's primary stakeholder as well as a major shareholder in the new Selkirk Copper Mines Inc. As the claims were staked long before designation of this block, the YG Quartz Mining Act regulatory regime applies to the Minto claims. Community consultation and community engagement with the SFN, as well as project regulators and other stakeholders continue to be a vital component of this project and will continue in partnership with the SFN leadership.

1.11 Recommendations

1.11.1 Exploration, Geology and Drilling

A two-phase drill program is recommended to advance both resource definition and near-mine exploration at the Minto Mine:

1. Phase One – Resource Expansion Drilling (20,000–30,000 m):

A focused drilling program is proposed to define and expand mineralization in key target areas including Minto North west lens, Minto East and Copper Keel Zones. Initial drilling budget would approximate ~\$10M.

2. Phase Two – Conversion Drilling (50,000 m – 100,000):

A second-phase campaign should focus on detailed conversion drilling. This should be informed by financial models and mine plan sequencing studies to focus the conversion of Inferred to Indicated resources at high priority location; either open pit zones, Ridgetop and 118, or high-grade underground zones, Minto East and Copper Keel. This second phase of drill would require a larger budget of \$15M–\$30M.

3. Structural Study Recommendations:

To support ongoing exploration and to improve resource modeling, it is recommended that a detailed structural geology study be undertaken with the following objectives:

- Characterize the influence and displacement patterns of late northwest-trending brittle faults that locally offset mineralization.
- Interpret the geometry and controls of shallowly dipping mineralized lenses, particularly in underexplored areas.

4. Regional Application of Structural Models:

Insights from the structural studies should be applied across the district to refine target generation and improve the predictive power of the geological model for future regional exploration efforts. The regional district represents 26,000 ha of an underexplored land package.

5. Geological Modelling:

A detailed geological model needs to be produced to help inform the resource modelling and future drill planning and target generation.

1.11.2 Metallurgical Recommendations

The QP recommends that a geometallurgical inspired testwork program be conducted to investigate improved recovery options for POX material. This program is expected to cost approximately \$1M and will include variability sulphidation testwork, geometallurgical unit characterization and a geometallurgical inspired testwork program.

1.11.3 Database, Sampling and Verification Recommendations

The QP recommends that the Minto database include corrections made to the data and exporting process to ensure the correct assay method is used and that a standardized process is established for QAQC analyses. Re-assays of failed values should be added to the database and additional check assays should be done based on comparisons with Standards.

1.11.4 Permitting Recommendations

It is recommended that environmental and permitting continue as needed to support Minto project development plans. Additional economic studies, such as a Preliminary Economic Assessment and/or a Feasibility Study should be conducted to evaluate the viability of the project.

2.0 Introduction

Moose Mountain Technical Services (MMTS) has been commissioned by Venerable Ventures Ltd. on behalf of the Selkirk First Nation (SFN) to prepare an updated Mineral Resource Estimate (MRE) Technical Report in accordance with the Canadian Securities Administrators' National Instrument 43-101 and Form 43-101F1, collectively referred to as National Instrument (NI) 43-101 for the Minto Property (Minto or the Project) located in Yukon, Canada.

843093 Yukon Inc., a Yukon company, is wholly owned indirectly by Selkirk First Nation, who currently owns the Project including the mineral rights, permits, and infrastructure. On June 30, 2025, Venerable Ventures Ltd. announced a Letter of Intent (LOI) to form an amalgamated company with the Selkirk First Nation which will acquire 843093 Yukon Inc. The new company will be named Selkirk Copper Mines Ltd, and will be a wholly owned subsidiary of Venerable Ventures.

The roughly CA\$15 million (US\$11 million) transaction will be completed through the issuance of common shares and warrants in the newly formed company, with Selkirk First Nation becoming its largest shareholder. The Definitive Agreement outlined in the LOI may be terminated due to the following circumstances:

- upon written agreement of VLV, 843093 Yukon Inc. and Selkirk First Nation
- on September 30, 2025, if the agreement has not been executed

This NI43-101 report is in support of the LOI and the News Release by Venerable Ventures Ltd. dated July 4, 2025.

The effective date of this report is April 7, 2025, and the report is based on technical information known to the authors at that date.

2.1 Qualified Persons

The table below lists the qualified persons for the report and the sections for which they are responsible.

Table 2-1: Qualified Persons

Person	Company	Sections
Sue Bird, M.Sc., P. Eng	MMTS	1.1 through 1.8, 1.10, 1.11.1, 1.11.3, 1.11.4, 2 through 12, 14 through 24, 25.1, 25.2, 25.4, 26.1, 26.2, 26.4, 26.5, 27
Travis O'Farrell, P. Eng.	Fuse Advisors Inc.	1.9, 1.11.2, 13, 25.3 and 26.3

2.2 Units, Currency and Rounding

The units of measure used in this report are as per the International System of Units (SI) or “metric”, except for Imperial units that are commonly used in industry (e.g., ounces (oz.) and pounds (lb.) for the mass of precious and base metals).

All dollar figures quoted in this report refer to Canadian dollars (CA\$) unless otherwise noted.

This report includes technical information that required subsequent calculations to derive subtotals, totals and weighted averages. Such calculations inherently involve a degree of rounding and consequently introduce a margin of error. Where these occur, the QPs do not consider them to be material.

3.0 Reliance on Other Experts

The QP authors of this Report state that they are qualified persons for those areas as identified in the "Certificate of Qualified Person" for each QP, as included in this Report. The QPs have relied and believe there is a reasonable basis for this reliance, upon the following other expert reports, which provided information regarding mineral rights, surface rights, royalties, agreements and environmental status in sections of this Report as noted below.

3.1 Mineral Tenure

The QP for this section and Section 4 has obtained the mineral claims list from the Yukon Online Mineral Title website (Yukon MTO, 2025). The QPs have not reviewed the mineral tenure, nor independently verified the legal status, ownership of the Project area or underlying property agreements. The QP has fully relied upon information supplied by Selkirk Copper Mines Inc., for this information through the following documents:

- The Asset Purchase Agreement as enclosed in a document from the Supreme Court of Yukon between Sumitomo Canada Ltd. (petitioner) and Minto Metals Corp. (respondent) and PricewaterhouseCoopers (receiver), and 843093 Yukon Inc. (purchaser), dated June 13, 2025.
- Claim Ownership – Selkirk Mine – 843093 Yukon Inc. - Letter from Austring, Fairman and Fetke dated July 21, 2025, and titled: Claim Letter #2, file # 19594
- Selkirk First Nation, 2025 – Letter Of Intent - Proposed Acquisition of the Mine Assets from 843093 Yukon Inc. ("BuyCo") by Venerable Ventures Ltd. ("VLV")

The mineral tenure information is used in Section 1.1, 1.2, 1.4.4, 2, 4.1, and 14 of the Report.

3.2 Surface Rights and other Agreements

- The Co-operation Agreement between Minto Explorations Ltd. and Selkirk First Nation, dated September 16, 1997 (Minto Explorations Ltd., 1997).
- Claim Ownership – Selkirk Mine – 843093 Yukon Inc. - Letter from Austring, Fairman and Fetke dated July 21, 2025, and titled: Claim Letter #2, file # 19594

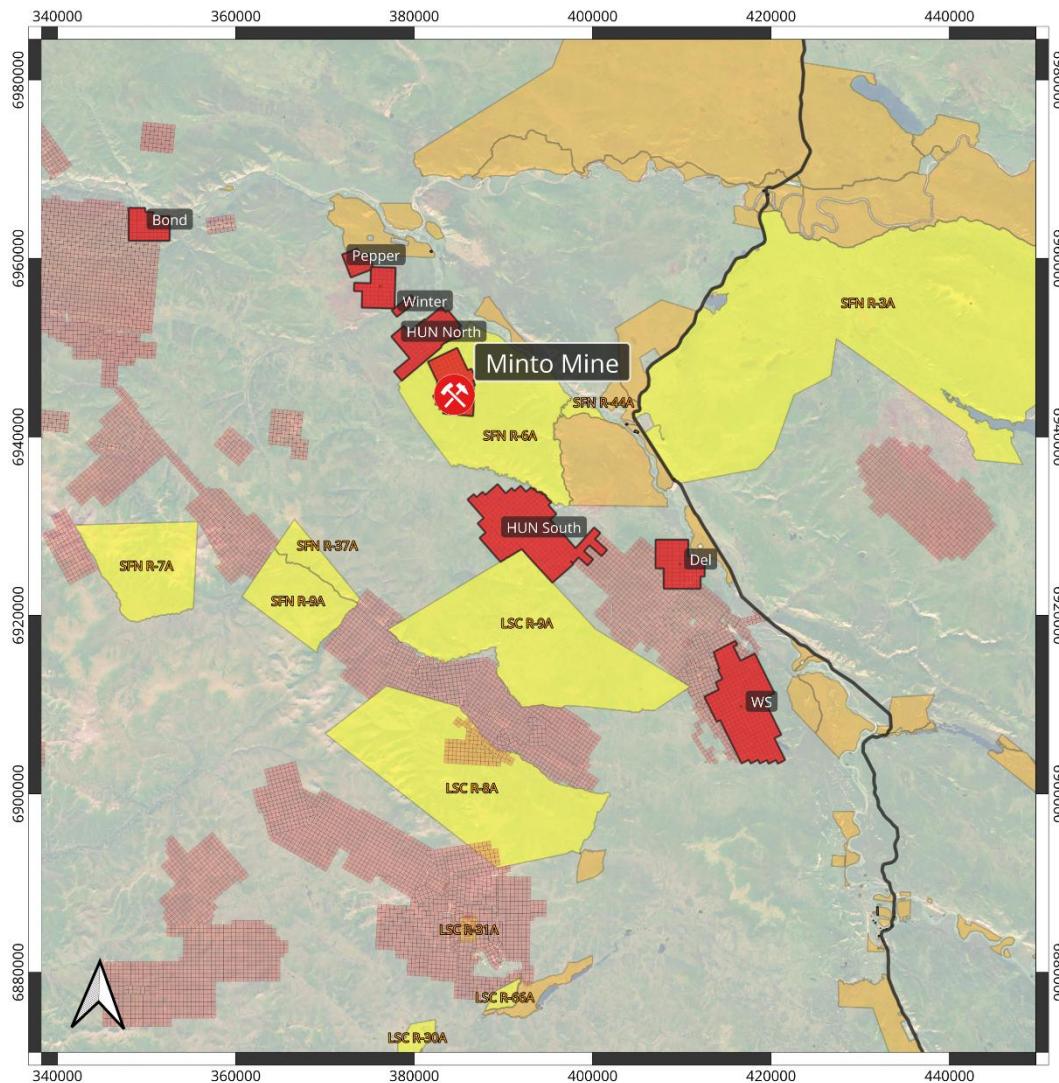
This information is used in Sections 1.1, 1.2, 4.2, 4.3, 4.4 and 14 of the Report.

3.3 Royalties and other Encumbrances

The QPs have not reviewed the royalty agreements nor independently verified the legal status of the royalties and other encumbrances. The QP has fully relied upon information supplied by Selkirk , for this information through the following documents:

- The Co-operation Agreement between Minto Explorations Ltd. and Selkirk First Nation, dated September 16, 1997.
- Letter from Austring, Fairman and Fetke dated July 21, 2025, and titled: Claim Letter #2, file # 19594 which has the royalty structure from the Capstone Mining Corp. (Capstone) Co-operation Agreement (CA) completed in October, 2009.

This royalty and encumbrance information is used in Section 1.1, 1.2, 1.5, 4.2 and 4.3 and 14 of the Report.


4.0 Property Description and Location

4.1 Claims

The Minto project is comprised of seven separate claim blocks comprising the Minto Copper - Gold Belt. The blocks are the Minto/Def block, hosting the mine site, and the Del, Bond, Pepper/Toe/Winter, Hun North, Hun South and WS blocks. These properties extend northwest from the WS block, centered about 28 km northwest of the village of Carmacks, Yukon Territory, to the Bond block, located 39 km WNW of the mine site and about 117 km northwest of Carmacks. (Source: Selkirk Copper, 2025)

Figure 4-1 shows the claim blocks comprising the Minto property. The seven claims cover a combined area of 26,850 hectares (61,760 acres).

Appendix A lists the status of claims comprising the Minto property.

LEGEND

- hammer icon: Minto Mine
- black line: Klondike Highway
- red square: Minto Claims
- pink square: Other Active Claims
- yellow square: First Nation Category A
- orange square: First Nation Category B
- green dot: Community

0 10 20 km

REFERENCE
Scale : 1:500000
Datum : NAD83 UTM Zone 8N
Project : Minto
Author : R.Abraham P.Geo.
Date: July 2025

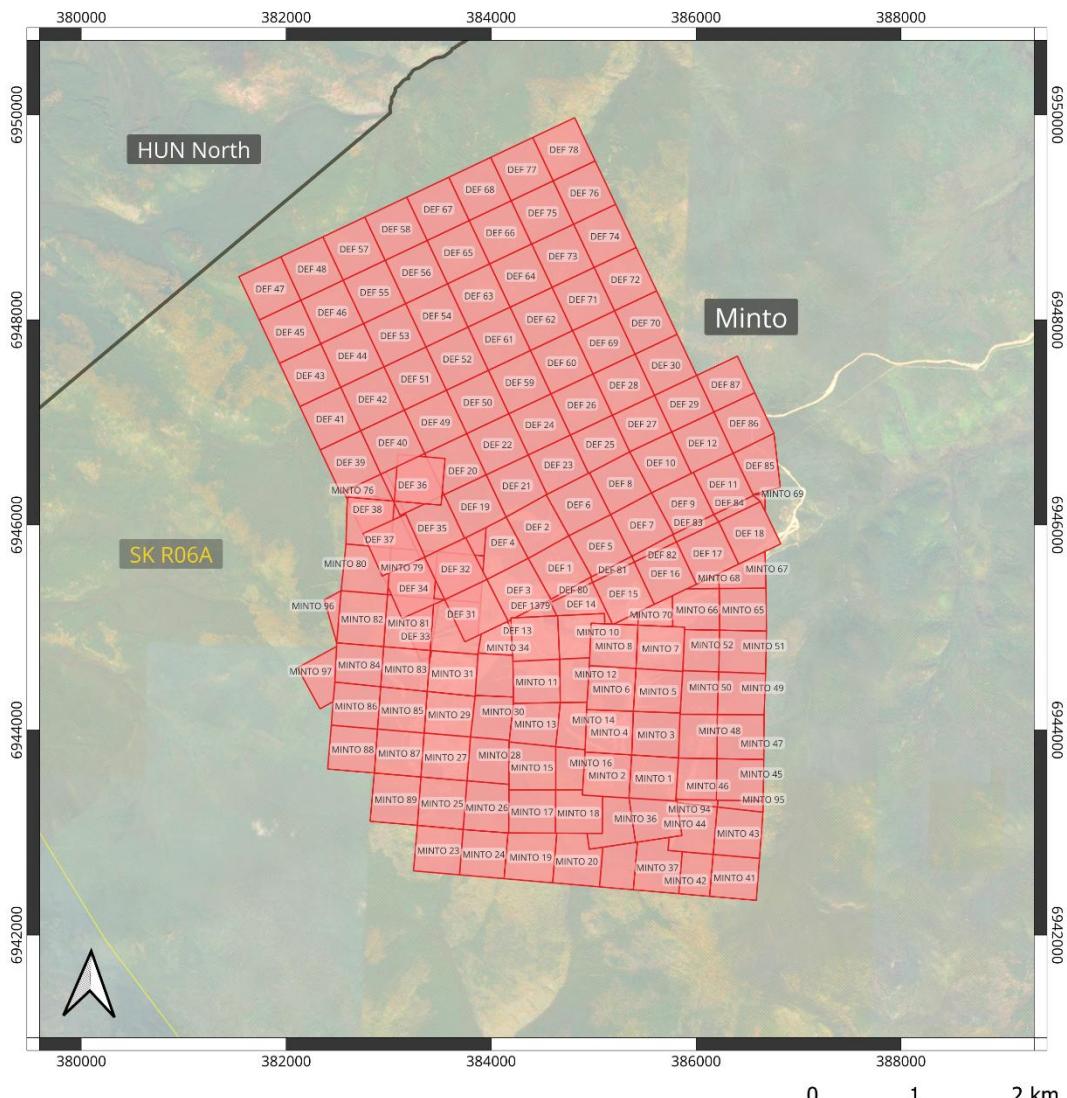
(Source: Selkirk Copper, 2025)

Figure 4-1 Claim Blocks Comprising Mineral Properties Held by Minto Explorations Ltd

4.1.1 Minto/Def Block

The Minto/Def block ((Source: Selkirk Copper, 2025)

Figure 4-2) comprises 164 Yukon quartz mining claims covering 2,760 hectares (Mercer and Sagman, 2012). The mine site is centered at approximately 62°37'05" N Latitude, 137°14'56" W Longitude (UTM NAD 83 co-ordinates 384625 E, 6945045 N, Zone 8) on NTS sheet 115I11, in the Whitehorse Mining District. All claims are 100% held by 843093 Yukon Inc.


Yukon quartz mining leases have been surveyed by an authorized Canada Lands Surveyor, in accordance with instructions from the Surveyor General. These Quartz mining claims have not undergone a legal survey.

The Minto property is located within a package of Category A settlement land held by the Selkirk First Nation (SFN R-6A), and within the traditional territory of the SFN. All claims were originally staked, and 65 were brought to lease, prior to finalization of the settlement land package. Subsequently, any Yukon First Nation government which has completed selection of its Category A settlement lands retains the surface and subsurface rights to the land. Category A First Nations settlement lands prohibit any further staking, and also prohibit exploration without a formal agreement between the proponent and the First Nation.

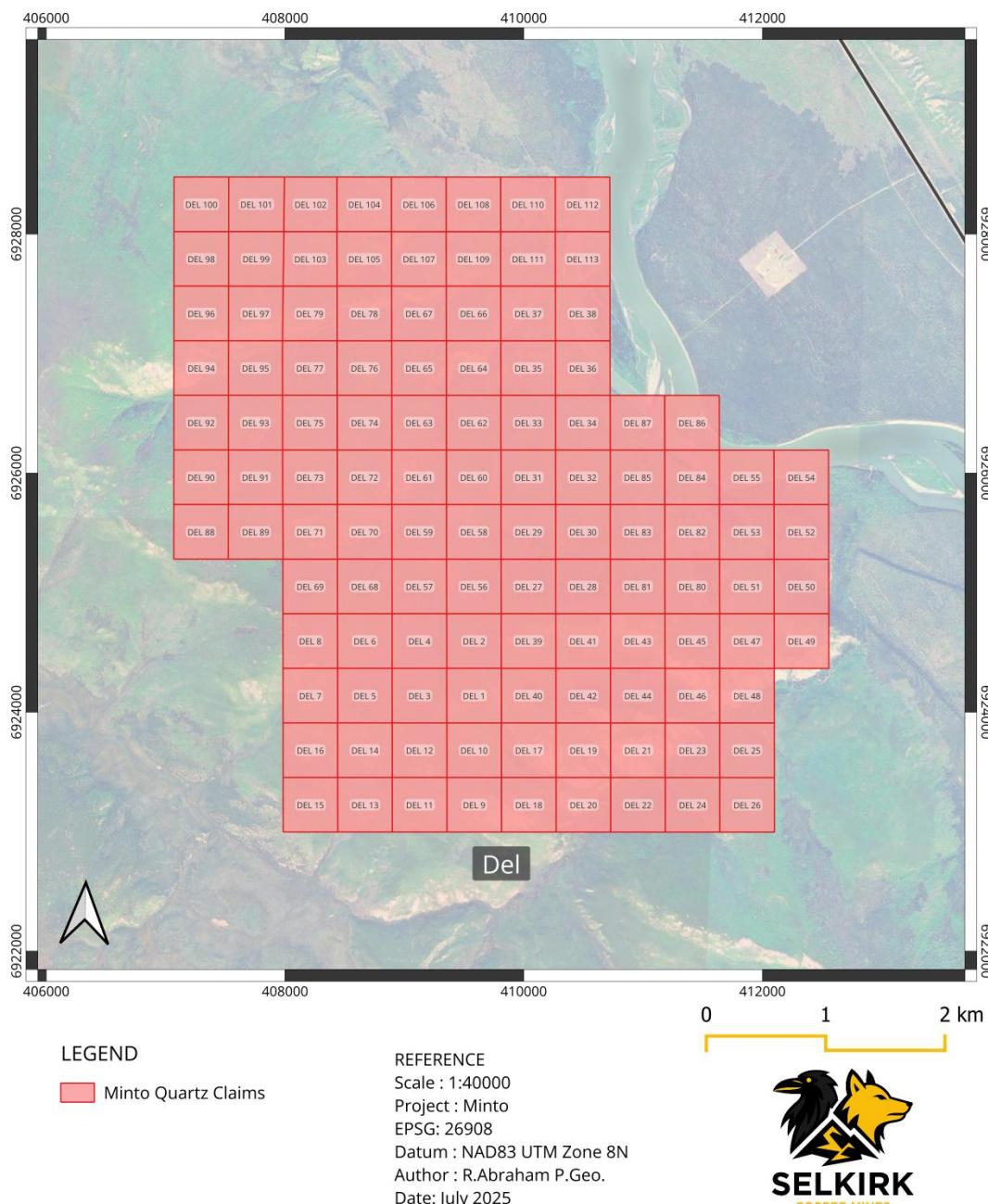
4.1.2 Del Block

The DEL claim block comprises 113 Yukon quartz mining claims, covering 2,360 hectares ((Source: Selkirk Copper, 2025) Figure 4-3) centered at 62° 27' 07" N Latitude, 136° 44' 52" W Longitude (UTM NAD 83: 409820, 6925759, Zone 8), and located about 32 km southeast of the center of the main Minto block. All claims are 100% held by 843093 Yukon Inc.

None of the claims have undergone a legal survey. All claims are located on Crown Land, within an overlap area of the traditional territories of the Selkirk First Nation and the Little Salmon - Carmacks First Nation (LSCFN).

LEGEND

- Minto Quartz Claims
- Selkirk First Nation Category A


REFERENCE

Scale : 1:50000
 Project : Minto
 EPSG: 26908
 Datum : NAD83 UTM Zone 8N
 Author : R.Abraham P.Geo.
 Date: July 2025

(Source: Selkirk Copper, 2025)

Figure 4-2 Claim Map, Minto/Def Bloc

(Source: Selkirk Copper, 2025)

Figure 4-3 Claim Map, Del Block

4.1.3 Bond Block

The BOND claim block comprises 70 Yukon quartz mining claims covering 1,461.6 hectares (**Error! Reference source not found.**) located along the south shore of the Yukon River and centered at 62° 46' 26" N Latitude, 137° 56' 02" W Longitude (UTM NAD 83: 350280, 6963835, Zone 8). The claims are located about 39 km WNW of the center of the Minto/Def block (Figure 4-4). All claims are 100% held by 843093 Yukon Inc.

None of the claims have undergone a legal survey. All claims are located on Crown Land, within the traditional territory of the Selkirk First Nation.

4.1.4 Pepper, Toe and Winter Blocks

The Pepper, Toe and Winter blocks ((Source: Selkirk Copper, 2025)

Figure 4-5) form a marginally contiguous block of claims about 17 km northwest of the Minto-Def block. The Pepper claim block comprises 32 Yukon quartz mining claims covering 662 hectares located 6.5 km south of the Yukon River and centered at 62° 44' 38" N Latitude, 137° 28' 23" W Longitude (UTM NAD 83: 373661 6959482, Zone 8). All claims are 100% held by Minto Explorations Ltd. following Minto's purchase of the claims from BCGold Corp.

None of the claims have undergone a legal survey. The claims are located on the traditional territory of the Selkirk First Nation and the northeastern edge of the claims overlap with Selkirk First Nation R-18B settlement land to which the Selkirk First Nation holds surface rights.

The TOE claim block comprises 76 Yukon quartz mining claims covering 1,588 hectares located 7 km west of the Yukon River and centered at 62° 43' 4" N Latitude, 137° 25' 25" W Long (UTM NAD 83: 376072 6956490, Zone 8). The claims are 14 km northwest of the Minto/Def block. All claims are 100% held by 843093 Yukon Inc.


The WINTER claim block comprises 12 Yukon quartz mining claims covering 250 hectares, located 5 km to the west of the Yukon River and centered at 62° 42' 8.5" N Latitude, 137° 22' 5" W Longitude (UTM NAD 83: 378843 6954655, Zone 8). The claims are 10 km northwest of the Minto/Def block. All claims are 100% held by 843093 Yukon Inc.

None of the claims have undergone a legal survey. The claims are located on the traditional territory of the Selkirk First Nation.

(Source: Selkirk Copper, 2025)

Figure 4-4 Claim Map, Bond Block

REFERENCE
 Scale : 1:50000
 Project : Minto
 EPSG: 26908
 Datum : NAD83 UTM Zone 8N
 Author : R.Abraham P.Geo.
 Date: July 2025

(Source: Selkirk Copper, 2025)

Figure 4-5 Claim Map, Pepper, Toe and Winter Block

4.1.5 Hun North Block (includes MEL claims)

The HUN North claim block comprises 146 Yukon quartz mining claims covering 2,873 hectares ((Source: Selkirk Copper, 2025)

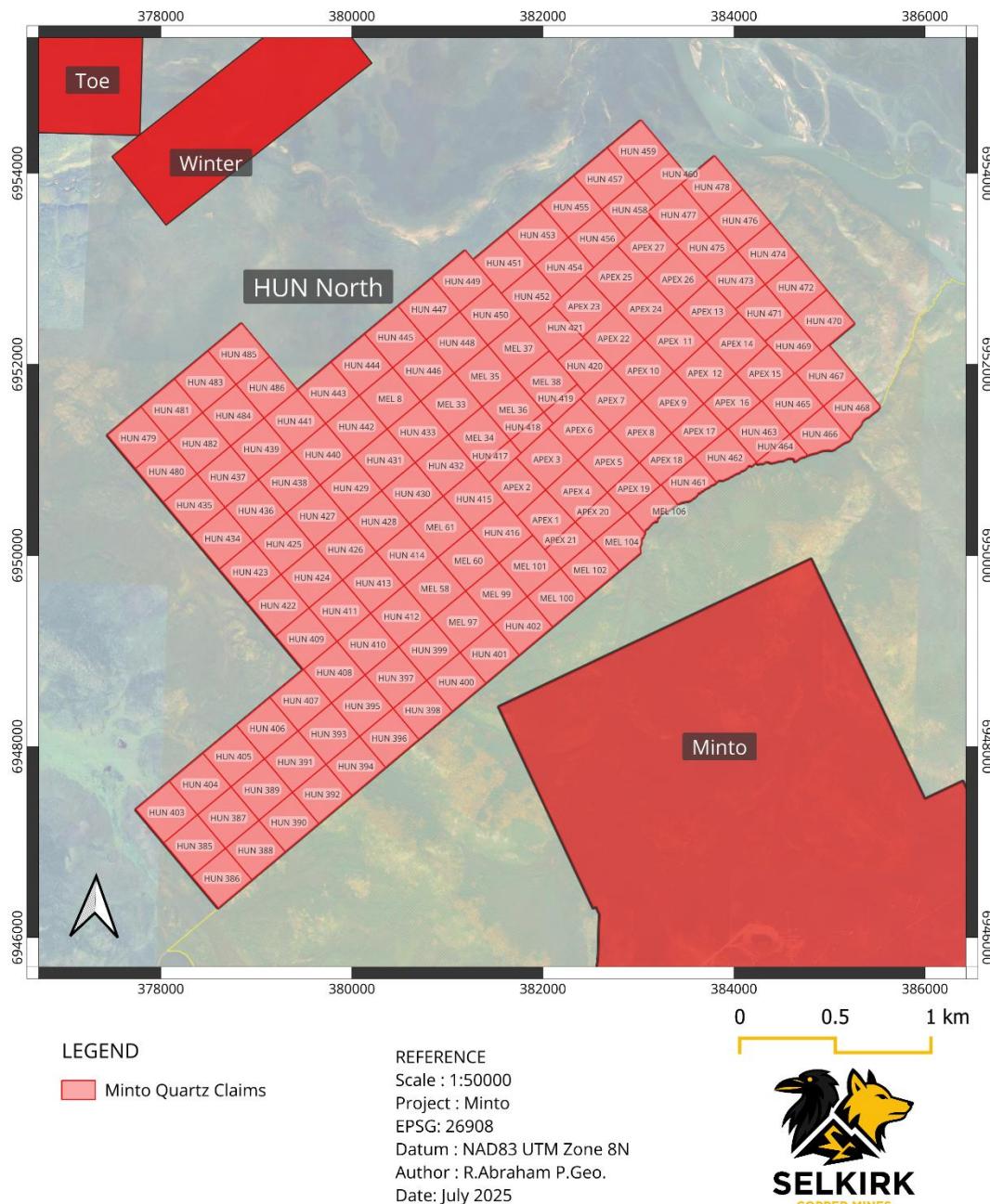
Figure 4-6) located along the southwestern shore of the Yukon River and centered at 62° 40' 11" N Latitude, 137° 18' 54" W Longitude (UTM NAD 83: 381433 6950929, Zone 8). This block of claims comprises the MEL 8, 33 - 38, 58, 60, 61, 97, 99 - 106 claims, the HUN 385 – 486 claims and the APEX 1-28 claims. The block is centered approximately 6 km north of the center of the MINTO/DEF block. All claims are 100% held by 843093 Yukon Inc.

No claims have undergone a legal survey. All claims are located on Crown Land, within the traditional territory of the Selkirk First Nation (SFN), and border SFN Category R-6A settlement land at their southern margin.

4.1.6 Hun South Block

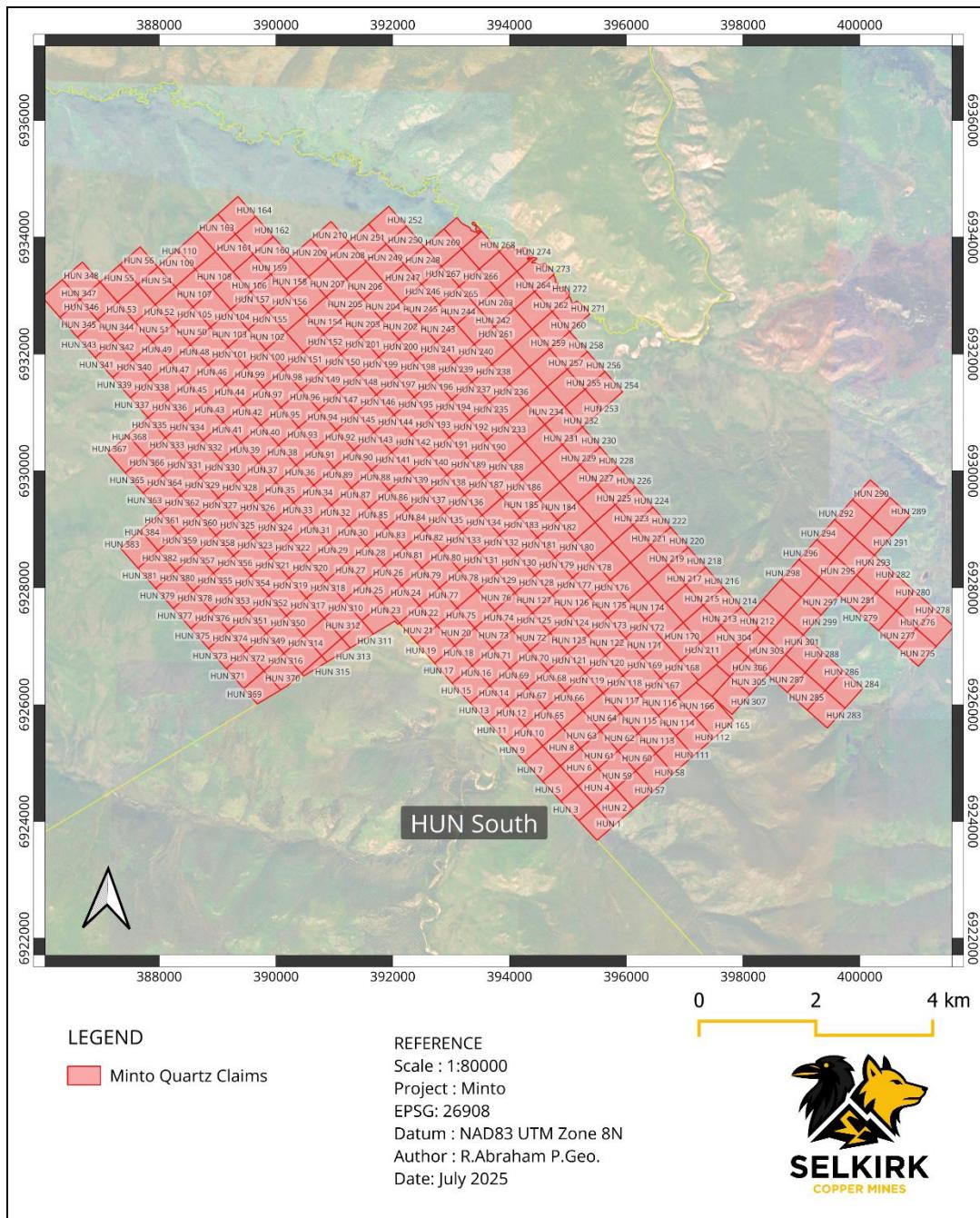
The HUN South claim block comprises 384 Yukon quartz mining claims covering 7,914 hectares ((Source: Selkirk Copper, 2025)

Figure 4-6 Claim Map, Hun North Block


) located 15 km southwest of the Yukon River and centered at 62° 29' 4" N Latitude, 137° 04' 56" W Longitude (UTM NAD 83: 392690 6929908, Zone 8). The claims are approximately 18 km SSE of the MINTO/DEF block. All claims are 100% held by 843093 Yukon Inc.

None of the claims have undergone a legal survey. All claims are located on Crown Land. The northern half of the claim block is located on the traditional territory of the Selkirk First Nation while the southern half of the claim block is located within an overlap of the traditional territories of the Selkirk First Nation and the Little Salmon - Carmacks First Nation (LSCFN). The claims are bordered to the southwest by LSCFN R-9A settlement land and to the northeast by Selkirk First Nation R-6A settlement land.

4.1.7 WS Block


The WS claim block comprises 351 Yukon quartz mining claims covering 6,963 hectares ((Source: Selkirk Copper, 2025) Figure 4-8). It is located 8 km southwest of the Yukon River and centered at 62° 18' 35.5" N Latitude, 136° 35' 59.5" W Longitude (UTM NAD 83: 417061 6909725, Zone 8). The claims are 50 km SSE of the MINTO/DEF block. All claims are 100% held by 843093 Yukon Inc.

None of the claims have undergone a legal survey. All claims are located on Crown Land, within the traditional territory of the Little Salmon – Carmacks First Nation (LSCFN).

(Source: Selkirk Copper, 2025)

Figure 4-6 Claim Map, Hun North Block

(Source: Selkirk Copper, 2025)

Figure 4-7 Claim Map, Hun South Block

LEGEND

Minto Quartz Claims

REFERENCE

Scale : 1:75000
Project : Minto
EPSG: 26908
Datum : NAD83 UTM Zone 8N
Author : R.Abraham P.Geo.
Date: July 2025

(Source: Selkirk Copper, 2025)

Figure 4-8 **Claim Map, WS Block**

4.2 Surface Rights, Legal Access and Obligations

4.2.1 Cooperation Agreement with the Selkirk First Nation

In September 1997, MintoEx entered into a Co-operation Agreement (CA) with the Selkirk First Nation (SFN) towards development and operations of the Minto Project. The agreement called for co-operation between the two parties, stating that MintoEx pledges that the project would provide meaningful benefits to the SFN and its beneficiaries. In turn, Selkirk would co-operate and assist in development and operation of the project by providing access, goods and services, assisting in training and recruitment of candidates for employment, participating in environmental and social assessment activities, and supporting Minto's application for a Type A Water Licence. Minto agrees to prepare and carry out an effective program of progressive reclamation, temporary closure, final reclamation and long-term monitoring. Minto would also investigate, together with the SFN, the establishment of a trust to establish funding for closure, final reclamation and post-closure monitoring.

The original 1997 Agreement and subsequent additions to the agreement have been outlined in the 2019 Competent Person's Report (CPR) titled "Competent Person's Report: Minto Mine – Yukon Territory, Canada". This was prepared for Pembridge Resources plc. and filed with the London Stock Exchange on August 9, 2019. This agreement and the Amendment Agreement dated October 15, 2009 remains in effect (Austring, Fairman and Fekete, 2025).

The Agreement includes the following financial considerations:

- a. \$35,000 within ten days of signing of the Agreement;
- b. \$35,000 within ten days of issuance of a Type A Water License;
- c. \$35,000 within 30 days of the commissioning of a mill; and
- d. a Net Smelter Return (NSR) royalty of 0.500%.

In 1997, Minto estimated the project would generate NSR royalties of approximately CAD\$4 million to the federal government. Minto agreed to pay the aforementioned royalty to the SFN instead, and "Minto shall not be made liable to pay royalties to both Government and Selkirk" (1997 Co-operation Agreement Concerning the Minto Project).

On October 1, 1997 the SFN, and all other Yukon First Nations with completed land claim agreements, acquired ownership of their Category A and B settlement lands, including Settlement Land Parcel R-6A. These land claim agreements provide fee simple title to minerals therein and thereunder, except for those held by holders of pre-existing claims.

4.3 Royalties and other Encumbrances

The Sherwood Mining Corporation (Sherwood) took over ownership of MintoEx in 2005. On December 31, 2008, Capstone Mining Corp. (Capstone) became the owner of all issued and outstanding shares held by Capstone Mining North Ltd. and Sherwood Copper Corporation. Following this acquisition, a new Co-operation Agreement (CA) was completed in October, 2009. This agreement called for issuance by Capstone to the SFN of 1,200,000 common shares of Capstone, with 600,000 shares to be paid out on the effective date of the Agreement and 100,000 shares to be paid out on each of the next six anniversary dates of the effective date of the Agreement.

The 2009 CA also stated a revised policy for provision of NSR royalty payments to the SFN as follows:

- a. 0.5% of the NSR for each Quarter Shipment, on or after April 1, 2009, where the Benchmark Quarter Price of the London Metals Exchange (LME) does not exceed US\$1.80/lb;
- b. 1.0% of the NSR for each Quarter Shipment where the Benchmark Quarter Price is greater than US\$1.80/lb, up to and including US\$2.50/lb;
- c. 1.25% of the NSR for each Quarter Shipment where the Benchmark Quarter Price exceeds US\$2.50/lb, up to and including US\$3.00/lb; and
- d. 1.5% of the NSR for each Quarter Shipment where the Benchmark Copper Price exceeds US\$3.00/lb.

The NSR for a Quarter shall be the amount equal to the Product Value of all Quarter Shipments in that Quarter less eligible deductions for all Quarter Shipments during that Quarter.

Should MintoEx identify any “New Reserves” (calculated in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), beyond a Threshold Amount of 5 Mt grading 1.5% copper, MintoEx may not develop or otherwise exploit these reserves until Minto and the SFN have reached a new or amended agreement. The new agreement will establish a new NSR royalty and other financial participation, or benefits, in favour of the SFN.

MintoEx shall also advance to Selkirk a “QMA Royalty Advance” (where QMA stands for Quartz Mining Act) of 50% of Minto’s estimated QMA royalty for that calendar quarter, within 50 days of the end of that calendar quarter.

Other financial considerations of the revised CA are as follows:

For the purpose of finding “Eligible Projects”, MintoEx was obligated to contribute a total of \$5,000,000 by June 10, 2010. An “Eligible Project” is any project or program which has been approved by the Selkirk Council where Selkirk is the sponsor, alone or with others. The project must result in tangible, ongoing benefits to the SFN, the community of Pelly Crossing or a Selkirk community at Minto Landing.

As per Business Opportunities, where a Designated Affiliate, designated by the SFN, has indicated that it wishes a “Project Requirement” to be treated as a “Preferred Opportunity”, a Selkirk Affiliate or Selkirk business shall have the preferential right and opportunity to negotiate and potentially be awarded a contract to supply that Project Requirement. If the Designated Affiliate does not wish a particular project requirement to be treated as a Preferred Opportunity or is not awarded a contract for this, Minto shall acquire the same required goods or services by means of a Competitive Bid Process, unless it elects to do so on a “Self-Supply Basis” or by means of a “Sole Source Supplier”.

Regarding employment opportunities, Minto agrees to provide priority in recruitment, training, retention and advancement of potential employees to available SFN citizens and residents of Pelly Crossing, and to offer similar opportunities to other Northern Tutchone persons. The SFN will identify available candidates for employment. Minto, in consultation with the representative of the SFN, will determine which candidates are suitable for employment, either by existing job qualifications or are deemed suitable for training to meet these qualifications. This is in preference to other potential candidates.

A notice to renew the lease agreements for the Airport Area, Mill Site and Camp, Overburden Dump and Explosives Plant/Magazine, Tailings Disposal Area and Waste Dump – Open Pit (together, the “Lease Agreements”) was submitted to the Chief of the SFN on March 23, 2016. This specifies a renewal for a further 10 years, under the same terms and conditions in the original applicable Lease Agreement. In 2016, MintoEx exercised its renewal of the CA for a further 10 years.

4.4 Environmental Liabilities

Since May 2023, the Yukon Government has overseen surface water monitoring at the Minto Mine site, implementing a range of measures, including water treatment and controlled discharge, to manage site water (Smith & Bursa, 2025). As of January 1, 2025, total available water storage capacity across the site was 1,541,715 m³. This exceeds the minimum requirement of 1,000,000 m³ of excess storage capacity by October 31 each year, as outlined in Specific Condition 59 of Water Licence QZ14-0131. The Yukon Government will remain involved in the water monitoring and management until a re-start decision before 2027.

Environmental liability is addressed through financial security mechanisms, which must cover the peak liability anticipated within a two-year period and is recalculated as mine plans evolve. Any future transfer or amendment of the Quartz Mining License or Water License will require updated closure planning and a revised security estimate to satisfy regulatory expectations.

4.5 Permits

The Minto Mine holds an active Quartz Mining Licence (QML-001), valid until December 31, 2030, which governs both open pit and underground operations. Its associated Type A Water Licence (QZ14-031), issued in August 2015 and expiring in 2040, authorizes water use, diversion, and effluent discharge in accordance with environmental standards. A Class 4 Mining Land Use (LQ00565) approval is also in place, supporting surface exploration activities within the licensed area. All permits, licences, and associated regulatory obligations are currently in good standing and provide a solid foundation for continued project advancement.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Accessibility

The property is located west of the Yukon River, about 240 km north of Whitehorse, Yukon, and about 20 km WNW of Minto Landing, the latter on the east side of the river as illustrated in Figure 5-1. The property is accessible by Yukon Highway 2 (the North Klondike Highway) to Minto Landing. During the summer months, MintoEx operated a barge across the Yukon River (250m in width) connecting the landing with an all-weather gravel road extending 27 km from the west bank to the mine site. In winter, the crossing is accessed by an ice bridge as ice conditions permit. There is typically a 6 to 8-week period associated with each freeze-up and break-up, where access across the river is impossible. West of the river, the access road crosses one major tributary, Big Creek, by means of a single-span bridge with reinforced concrete abutments and deck. During times of suitable river crossing, the access roads and river crossing allow for heavy vehicle traffic. When river access is available, personnel are transported by commercial bus from Whitehorse. During freeze-up and break-up, access is provided by chartered air services from Whitehorse to a 1,300 m airstrip on the property (Mercer and Sagman, 2012).

LEGEND

- Minto Mine
- Towns
- Highway
- Yukon Territory

REFERENCE
 Scale : 1:5000000
 Datum : NAD83 UTM Zone 8N
 EPSG: 26908
 Project : Minto
 Author : R.Abraham P.Geo.

0 100 200 km

Figure 5-1 General location of the Minto Mine property

(Source: SRK, 2009)

Figure 5-2 Minto Barge Crossing, Yukon River (Mercer and Sagman after SRK 2009)

During production, the barge typically ceased operation in October and resumes operations in May. A winter road is typically in operation from January through March.

5.2 Climate

The climate is continental sub-arctic, with short warm summers and long, very cold winters. Average January high and low temperatures are -22.2°C to -32.8°C , respectively, with a daily mean temperature of -27.5°C . The average July high and low temperatures are 22.6°C and 8.3°C , respectively, with a daily mean of 15.5°C . Average precipitation is 310.3 mm (12.2"), occurring mainly as rain in the summer months (Wikipedia, 2017, after Environment Canada). The field season for surface exploration work extends from late May to late September. Drilling may continue later into the season and can begin in late winter, provided water lines can be kept from freezing. Mining activities continue year-round, although surface operations may be temporarily suspended during periods of extreme cold.

5.3 Physiography

The property lies towards the eastern limit of the Dawson Range which is typified by rolling hills and gentle to moderate topography, with elevations ranging from 640 m (2,100') to 975 m (3,200') ASL. The fairly gentle slopes do not result in accessibility problems, or avalanche risk. South facing slopes are normally stable and suitable for building and infrastructure construction while north-facing slopes are typically permafrost-bearing. Overburden consists mainly of colluvium, comprised of sand originating from weathering of granitic bedrock underlying the area. Overburden depth is typically fairly thin, although may exceed 50 m locally. Bedrock exposure is fairly abundant along ridgelines and hilltops but is scarce elsewhere. The Minto mine site occurs somewhat east of the western limit of the Reid glacial advance, occurring from 120 to 60 Ka (Yukon Geological Survey). Vegetation consists of typical northern boreal forest, which has undergone several episodes of burning, the most recent in 2010.

5.4 Local Resources and Infrastructure

The property is serviced by a spur of the main electrical grid servicing Whitehorse, Haines Junction, Faro and Dawson. Power requirements are approximately 6.0 MW available from the main Yukon power grid. An additional 2 MW is expected to be required for underground operations; this would be provided by additional generators. The property size and moderate terrain have proven sufficient to accommodate mining facilities, mill processing sites, and waste disposal sites. There is sufficient room for expansion of these facilities. There is sufficient water on the property to supply mining and milling operations, including accommodations and drilling.

Limited fuel and grocery services, and an available workforce for some activities, are located at Pelly Crossing (population 291, 2008 estimate), the only community of the Selkirk First Nation. Pelly Crossing is located along the North Klondike Highway about 35 road-km northeast of Minto Landing. Somewhat more comprehensive grocery, fuel, hardware services and accommodations, and a limited workforce, are available at the Village of Carmacks (population of 596, 2023 Census), located at the junction of the North Klondike and Robert Service highways, which is roughly 70 km south of the access road extending from the North Klondike highway to the mine site.

The property is located approximately 250 road-kilometres north of the City of Whitehorse, a full-service community of about 31,000 including surrounding communities. Whitehorse has excellent accommodation, groceries, hardware, camp supplies, bulk fuel and expediting services. The Mining Recorder's Office for the Whitehorse Mining District is located in Whitehorse, as are territorial and some federal government services. Whitehorse, the capital city of Yukon, has a substantial skilled labour force, including professional geoscientists and tradespeople. The mining operation at Minto includes staff from outside Yukon.

6.0 History

This section has been modified and updated from the previous NI43-101 PEA report (JDS, 2021). A summary of activities is included in Table 6-1. For the historical resource estimates listed in this report, the qualified person has not done sufficient work to verify or classify the historical estimate as current mineral resources. The issuer is not treating the historical estimate as current mineral resources.

6.1 History – Minto Block

The following section pertaining to the project history up to 2011 is taken from the Yukon Minfile, by the Yukon Geological Survey, and has also been provided in the previous NI43-101 PEA report (JDS, 2021). Drilling statistics, holes and total meters have been updated from the full verified Minto database.

The present Minto property was first staked in 1971 as the Minto 1-16 claims, by the Dawson Syndicate (Silver Standard Mines Ltd and Asarco Inc.), covering a target identified from a regional stream sediment program. Later in 1971, the Dawson Syndicate conducted soil sampling, Induced Polarization (IP) surveying, hand pitting, and a 1,123 m core drilling program in 7 holes. In 1972, the Syndicate followed up with detailed geological mapping, airstrip construction, extensive bulldozer trenching and an 1,812 m core drill program in 12 holes.

In June of 1973, United Keno Hill Explorations discovered mineralization on the adjoining DEF claims. This led to the formation of a joint venture with the holders of the DEF claims to conduct a 13,749 m core drilling program in 91 holes targeting the “North Zone” along the northern Minto property boundary, as well as the staking of four fractional claims. The “North Zone” would later become the Minto Main Zone. In early 1974, a winter road was constructed to the airstrip, and another core drilling program of 19,427 m in 110 holes was completed.

In 1977, United Keno Hill Mines (UKHM) released results of a joint feasibility study, reporting reserves at the Main Zone of 6,550,778 t grading 1.86% copper (Cu), 0.51 gold (Au) g/t, and 6.86 silver (Ag) g/t, of which 41% of the deposit was located on the DEF claims. This is a historical reserve estimate and does not distinguish between proven and probable reserves or other resource categories and is not compliant with modern resource and reserve standards in National Instrument 43-101. As such, the reserve estimate has not been verified and cannot be relied upon.

In 1984, Silver Standard changed its name to Consolidated Silver Standard Mines Ltd. It transferred its interest to a subsidiary, Western Copper Holdings Ltd, which in 1989 transferred its interest in most of the claim block to Teck Corp (Teck). During this period, Western Copper Holdings conducted shallow drill tests (<60m) in the northwest region of the property with no significant results. Teck conducted a magnetometer/VLF survey in 1991.

In 1993, Teck and Asarco sold their interests in Minto claims to Minto Explorations Ltd. (MintoEx), a newly formed company incorporated specifically to acquire the Minto and DEF claims. The two blocks were consolidated into the Minto Property. Later that year, MintoEx conducted an airborne radiometric survey and a 960 m core drilling program comprising 8 delineation holes for infilling and metallurgical studies.

Table 6-1: Summary of Minto Project History

Year	Company	Activities	Drilling Metres
1971	Dawson Syndicate	Staked Minto claims covering regional stream sediment program. Initial program involved soil sampling, IP surveying, hand pitting and drilling.	1,123 m (7 holes)
1972	Dawson Syndicate	Geological Mapping, airstrip construction, trenching, drilling	1,812 m (12 holes)
1973	United Keno Hill Explorations	Discovered mineralization on the DEF claims, leading to a JV, additional staking and drill program targeting the 'North Zone'	7,887 m (62 holes)
1974	United Keno Hill Explorations	Winter road construction and drill program	11,228 (58 holes)
1977	United Keno Hill Mines (UKHM)	Feasibility study, historical reserve estimate* reported at the Main Zone of 6,550,778 t grading 1.86% copper (Cu), 0.51 gold (Au) g/t, and 6.86 silver (Ag) g/t.	N/A
1984	Silver Standard Mines Ltd	Transferred its interest to Wester Copper Holdings Ltd.	518 m (5 holes)
1989	Western Copper Holdings Ltd	Transferred its interest to Teck Corp.	966 m (22 holes)
1991	Teck Corp	Geophysical magnetometer/VLF survey conducted.	N/A
1993	MintoEx	<ul style="list-style-type: none"> Teck & Asarco sold interest to MintoEx, consolidating of DEF and Minto claims into the Minto Property. MintoEx conducted an airborne radiometric survey and an infill drill program for metallurgical studies. 	984 m (8 holes)
1994	MintoEx	<ul style="list-style-type: none"> Exploration drill program, engineering and geotechnical studies Release of a geological reserve estimate* of 8,818,000 t grading 1.72% Cu, 0.48 Au g/t and 7.5 Ag g/t, at a cut-off grade of 0.5% Cu 	2,185 m (19 holes)
1995	MintoEx	<ul style="list-style-type: none"> Minor drill program to test aeromagnetic anomalies. MintoEx continued to focus on engineering, geotechnical and environmental studies to support permit applications 	472 m (6 holes)
1996	MintoEx	<ul style="list-style-type: none"> Focus on infrastructure development and environmental studies. Geotechnical studies and continued deposit infill drilling occurred. 	548 m (4 holes)
1997	MintoEx	Environmental Assessment submitted	
1998	MintoEx	Type A water license issued.	
2005	Sherwood Mining Corp	<ul style="list-style-type: none"> Acquired Minto property, conducted resource estimation and drill program. Released a National Instrument (NI) 43-101 compliant resource estimate for the Main Zone comprised 8,340,000 t grading 1.83% Cu, 0.55 Au g/t and 7.95 Ag g/t, in the Measured and Indicated categories, and an additional Inferred Resource of 700,000 t grading 1.41% Cu, 0.45 Au g/t and 6.0 Ag g/t 	5,394 m (44 holes)
2006	Sherwood Copper	<ul style="list-style-type: none"> Infill drilling at Main Zone, exploratory drilling north, west and at Area 2. Mill construction began, and pre-stripping of the Main Zone 	24,496 m (119 holes)
2007		<ul style="list-style-type: none"> Drilling program, discovered Area 118, Copper Keel, Ridgetop zones. 	23,328 m

Year	Company	Activities	Drilling Metres
	Sherwood Copper	<ul style="list-style-type: none"> First copper-gold concentrate produced. Resource estimate for the Area 2 deposit, comprising a Measured and Indicated resource base of 7.6 Mt grading 1.26% Cu and 0.48 Au g/t at a 0.5% Cu cut-off. 	(91 exploration, 10 geotech holes)
2008	Sherwood Copper	<ul style="list-style-type: none"> Drilling focused on expanding resource base at A2, Area 118 and Ridgetop deposits before Capstone merger. Sherwood Copper merged with Capstone Mining Corp. 	23,860 m (120 holes)
2009	Capstone Mining	<ul style="list-style-type: none"> Titan-24 DC IP and Magnetotelluric (MT) geophysical surveys across the property. Drill program leading to discovery of Minto North & Minto East. 	31,693 m (204 holes)
2010	Capstone Mining	<ul style="list-style-type: none"> Drilling expanded Minto East deposit, discovered Wildfire & Inferno prospects. Titan 24-DC survey expanded 	47,110 m (167 holes)
2011	Capstone Mining	Defined Copper Keel & Wildfire deposits and updated resource estimates.	45,389 m (129 holes)
2012	Capstone Mining	No significant exploration	29,805 m (82 holes)
2013-2018	Capstone Mining	No significant exploration	17,682 m (141 holes)
2019	Pembroke Resources PLC	<ul style="list-style-type: none"> Pembroke Resources purchased Minto Mine from Capstone in a definitive "Share purchase Agreement" (June 2019) Surface & underground drilling campaign targeting Copper Keel West, North, South. UAW Airborne magnetics 	1,910 m (5 holes)
2020	Pembroke Resources	Drilling campaign focused on Minto North 2 (east lens) deposit & additional infill.	21,405 m (132 holes)
2021	Minto Metals	<ul style="list-style-type: none"> Pembroke restructured, pushing the Minto Mine into a subsidiary under the name Minto Metals. First exploratory drill campaign since 2012. Surface exploration drilling campaign (8,460 m) and underground infill program (8,285 m) 	16,745.05 m (60 holes)
2022	Minto Metals	<ul style="list-style-type: none"> Surface exploration drilling campaign (23,249 m) and underground infill program (19,309 m) BHEM surveys on 13 holes Downhole Physical Property Logging on 13 holes Property-wide Spartan MT survey Remote Sensing survey conducted across district. New target generation using geophysics and AI 	42,559.44 m (156 holes)
2023	Minto Metals	No exploration expenditures occurred.	
2024	PwC/Yukon Government	Reclamation work was conducted on surface	
		*not National Instrument 43-101 compliant	

In 1994, MintoEx conducted another core drilling program comprising 2,185 m in 19 holes and tested exploration targets outside of existing deposits. They also performed engineering and geotechnical studies including standard acid-base accounting, tests on tailings solids and effluent, and overburden and waste characterization. MintoEx also released a “geological reserve” estimate of 8,818,000 tonnes grading 1.72% Cu, 0.48 Au g/t and 7.5 Ag g/t, at a cut-off grade of 0.5% Cu. This is a historical reserve estimate, is not compliant with modern resource and reserve standards in National Instrument 43-101, has not been independently verified by this author, and should not be relied upon. MintoEx did not distinguish the portion located within the DEF claims.

In 1995, MintoEx completed a 572 m core drilling program in 6 holes targeting four aeromagnetic anomalies identified from the 1993 airborne survey. MintoEx continued to focus on engineering, geotechnical and environmental studies to support permit applications. They also drilled a single “condemnation hole” comprising 147 m, north of the proposed mill location.

In January of 1996, MintoEx completed a feasibility study and arranged project funding in May 1996. This was followed by an announcement in July that it had entered into a joint venture with Asarco to take the project to production. Asarco gained a 70% interest by providing funding up to US\$25 million, with MintoEx retaining the other 30% and operatorship.

In 1996, MintoEx upgraded 17 km of the access road and installed a 40 m single span bridge across Big Creek. The remaining 12.8 km of access road was upgraded in 1997, and two grinding mills were moved to site. MintoEx also completed geotechnical programs, conducted some core drilling along the deposit margins, and continued environmental reviews and working through mine permitting hearings. In April 1997, a final screening report on the Environmental Assessment of the proposed project was released by DIAND, followed in 1998 by issuance of a Type A water use license.

In October 2004, MintoEx completed an agreement with Asarco and Falconbridge to engage Roman Friedrich and Company Ltd. to solicit bids for the sale of all shares of Minto Explorations Ltd. Falconbridge agreed not to exercise its DEF claim repurchase right, provided that MintoEx purchases the right for a cash amount equivalent to 42.5% of the total of any takeover consideration.

In March 2005, the Sherwood Mining Corporation (Sherwood) initiated a takeover offer for Minto Explorations Ltd. The offer closed in June of 2005, resulting in Sherwood acquiring ownership of the Minto Project.

In July 2005, Sherwood released a National Instrument (NI) 43-101 compliant resource estimate for the Main Zone. The resource estimate comprised 8,340,000 t grading 1.83% Cu, 0.55 Au g/t and 7.95 Ag g/t, in the Measured and Indicated categories, and an additional Inferred Resource of 700,000 t grading 1.41% Cu, 0.45 Au g/t and 6.0 Ag g/t. This estimate has not been independently verified by the current QP. The qualified person has not done sufficient work to verify or classify the historical estimate as current mineral resources. The issuer is not treating the historical estimate as current mineral resources.

Later in 2005, Sherwood conducted a 5,394 m core drilling program focusing on confirmation and upgrading of the resource base. In September, Sherwood changed its name to the Sherwood Copper Corporation (Sherwood Copper) and obtained a 10-year extension on its Type A water license.

In June of 2006, Sherwood Copper received a 10-year extension of its quartz mining license, valid until June 30, 2016. In 2006, Sherwood completed 24,496 m of core drilling in 119 holes. This work program included infill drilling at the Main Zone and exploratory drilling to the north and west of it, and on "Area 2", 300 m southeast of the Main Zone. Sherwood Copper also began mill construction and pre-stripping of the Main Zone.

In 2007, a core drilling program comprising 23,292 m in 91 exploration and 10 geotechnical/metallurgical holes was completed. This resulted in the discovery of significant copper-gold mineralization at Area 118, Copper Keel, Airstrip and Ridgetop zones, as well as in areas between the Main and Area 2 zones. In February 2007, Sherwood Copper released a resource estimate for the Area 2 deposit, comprising a Measured and Indicated resource base of 7.6 Mt grading 1.26% Cu and 0.48 Au g/t at a 0.5% Cu cut-off. The qualified person has not done sufficient work to verify or classify the historical estimate as current mineral resources. The issuer is not treating the historical estimate as current mineral resources.

Also, in 2007, Sherwood Copper completed the mill and pre-stripping of the Main Zone. On May 1st, they produced their first copper-gold concentrates and expanded the mill to handle 2,400 tpd. On July 16th, Sherwood Copper delivered its first concentrate shipment to the Skagway, Alaska port, and announced it had reached commercial production on October 1st.

In 2008, Sherwood Copper conducted a core drilling program of 23,860 m in 120 holes, focusing on expanding and upgrading the resource base at Area 2, Area 118 and Ridgetop deposits. This drilling allowed for the preparation of a pre-feasibility study for expanded mining and milling rates. The mill expansion was completed, meeting or exceeding its design capacity of 2,400 tpd.

In September 2008, Sherwood Copper entered into an agreement with the Capstone Mining Corporation to create a mid-tier copper producer retaining the name of Capstone Mining Corp (Capstone). The merger was completed on November 24, 2008. The following day, Capstone and Yukon Energy announced the mine was officially connected to Yukon Energy's electrical grid.

Exploration in 2009 consisted of Titan-24 DC Induced Polarization (IP) and Magnetotelluric (Mt) geophysical surveys across the property. Capstone completed a core drilling program, comprising 31,693 m in 204 holes, focusing on infilling of the Ridgetop and Area 2 deposits, and testing of other targets. This led to the discovery of the Minto North and Minto East zones and provided upgraded resource and reserve figures for the Main, Ridgetop and Area 2/ Area 118 deposits (Yukon Minfile, 2014).

The following section is based on a January 2012 Technical report titled "Minto Phase VI, Preliminary Feasibility Study Technical Report", by B. Mercer and J. Sagman.

In 2010, through a 47,110 m (167 hole) program, the Minto East Deposit was defined, the copper-gold resources for Area 2/ Area 118 were expanded, and drilling led to the discovery of the Wildfire and Inferno prospects. A preliminary resource estimate for the Minto East deposit was provided in August and was updated later in 2010. Also, the Titan 24 survey was expanded to cover 85% of the Minto property (Mercer and Sagman, 2012).

In 2011, the Copper Keel and Wildfire resource sub-domains were defined and incorporated into the larger Minto South Deposit (MSD) and upgraded resource calculations were provided in May and again

in December of that year. Another large infill drill program totaling 45,389 m across 129 holes led to discovery of the Fireweed prospect down-dip and to the north of the MSD.

Completing the final major delineation drill program in 2012, totaling 29,805 m (82 holes), exploration from 2012 onwards was limited. No significant surface or underground exploration was conducted between 2013-2018, instead site activities focused on open pit production and the transition to underground mining in 2014. A total of 17,682 m in 132 holes were drilled over this six-year period mainly as part of focused infill or conversion programs in the Minto Main and Ridgetop zones.

Exploration activities recommenced in 2019 with a drill program starting late in the year totaling 1,910 m (5 holes) targeting the Copper Keel West, and a property wide airborne magnetic survey (UAV-MAGTM) (Minto Mine, AIF 2022). Pioneer Aerial Surveys Ltd. (Pioneer) conducted this survey covering the Minto Property. The surveyed area covered approximately 24 km² and included the mine site and its surrounding areas. Flight lines were flown at an orientation of 065° at a 50 m line spacing, and tie lines were flown at a 500 m spacing and at a 335° orientation. A total of 554.71-line kms were flown, including 480.59 km of flight lines and 74.11 km of tie lines. Final deliverable products from Pioneer included Total Magnetic Intensity (TMI) and 1st Vertical Derivative imagery. The tight spacing of survey lines using the drone platform allowed for the collection of high-resolution magnetic data.

The drill program continued into 2020 and focused on infill drilling at the Copper Keel and Minto North 2 zones. The objective was to upgrade the current resource base and to gain geological confidence for the optimization of the mine design. The surface drill program involved 62 NQ-diameter diamond drill holes totaling 16,485.3 m targeting the Copper Keel West, Copper Keel North, Copper Keel South, and Minto North 2 deposits. The underground infill-drill program mainly targeted the Copper Keel West and Copper Keel North lenses; however, additional drilling was also completed on the Minto East and Copper Keel Main production areas. A total of 6,835 m in 75 underground diamond drill holes were completed between May and November 2020.

The 2020 program confirmed that the Copper Keel south deposit comprises a series of northwest tending stacked lenses. The largest and uppermost lens dips gently eastwards and extends towards the Copper Keel Main mining area. The Copper Keel South deposit likely represents the western continuation of the Copper Keel Main deposit.

The Minto North 2 deposit is located southeast of the Minto North deposit, which was the highest-grade deposit on the property. Extraction by open-pit mining was completed in 2016. The 2020 drill program comprised 5,609 m in 31 holes, completed on 25 m to 30 m drill spacings. The program was conducted in two phases between May and September 2020. The Phase I drill program targeted the central portion of the deposit. Results show that the Minto North 2 deposit is a flat-lying, shallow lens occurring ~175 m below surface and 90 m east from the Minto North deposit.

Following up the results of the Phase I program, the second phase targeted the extension and definition of the deposit to the south and east, based on the 2019 high-resolution MAGTM drone survey in combination with 3D inverted Titan 24 DC-IP geophysical survey data. The Phase II drilling results indicate that the Minto North 2 deposit extends to the south and is cut off by a major NNW-trending fault along its east margin. Historic drill holes located on the east side of the fault intersected mineralization at depth, potentially representing the offset and down-dropped portion of the Minto North 2 deposit to the east.

6.2 Minto Metals Corp. Activities

The following section has been compiled and summarized from various internal company presentations, reports and public new releases. In 2021, Pembridge Resources restructured their ownership in the Minto Mine and transferred the project into a subsidiary renamed Minto Metals Corp. (Minto Metals) who were the primary operator until the mine site was abandoned in May, 2023.

Drilling by Minto Metals is illustrated Figure 6-1 with significant intercepts summarized in Table 6-2.

The 2021 drill program consisted of 8,460 m of surface drilling focussed on targeting north of the Minto Main pit and an underground infill program of 8,285 m centred on the Copper Keel zone. This program successfully discovered a new high grade lens in the west area of the Minto North pit. The discovery hole, 21EXP003, intercepted 28.0 m of 1.58% Cu, 1.29 g/t Au, and 8.11 g/t Ag, including a high grade zone of 3.5% Cu, 3.34 g/t Au and 19.2 g/t Ag over 9 m.

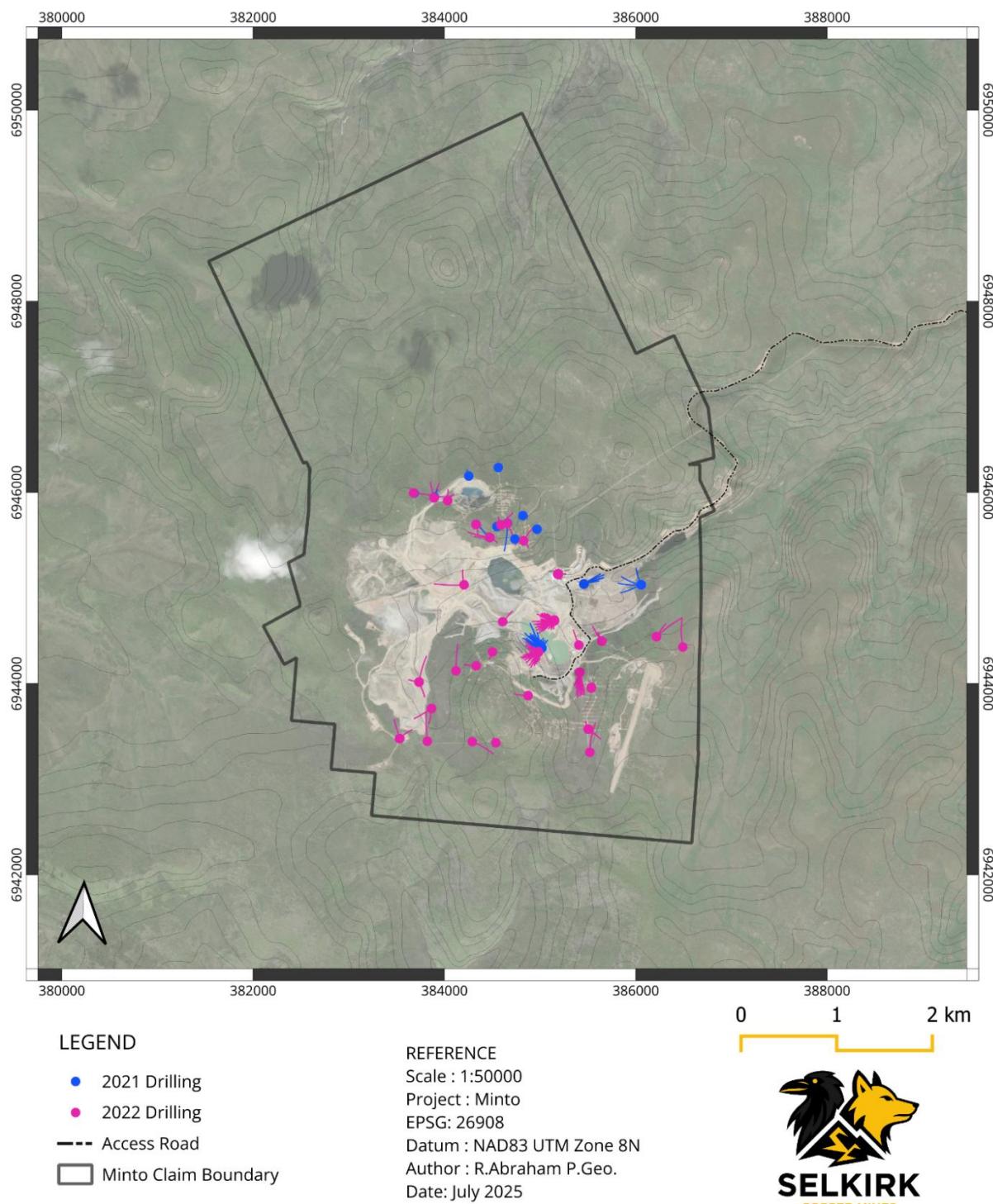
In 2022, Minto Metals Corp. continued advancing exploration and development activities at the Minto Mine. Securing of a 10-year Class 4 Quartz Mining Land Use Permit from the Yukon Government enabled the execution of its first significant exploration campaign since 2010.

The surface exploration drilling program totaled 23,249 m, complemented by a 19,309 m underground infill drilling program designed to upgrade resource confidence and optimize mine planning. The results from follow-up and step-out drilling at Minto North has confirmed the existence of a consistent, robust mineralized system west of the historical Minto North Pit. Drill hole 22EXP045 intersected 1.91% Cu over 34.59 m, including 4.80% Cu over 10.10 m drill width. Step-out drilling gave results from drill hole 21EXP003 of 1.58% Cu over 28 m.

Successes from the 2021-2022 exploration drill campaigns included:

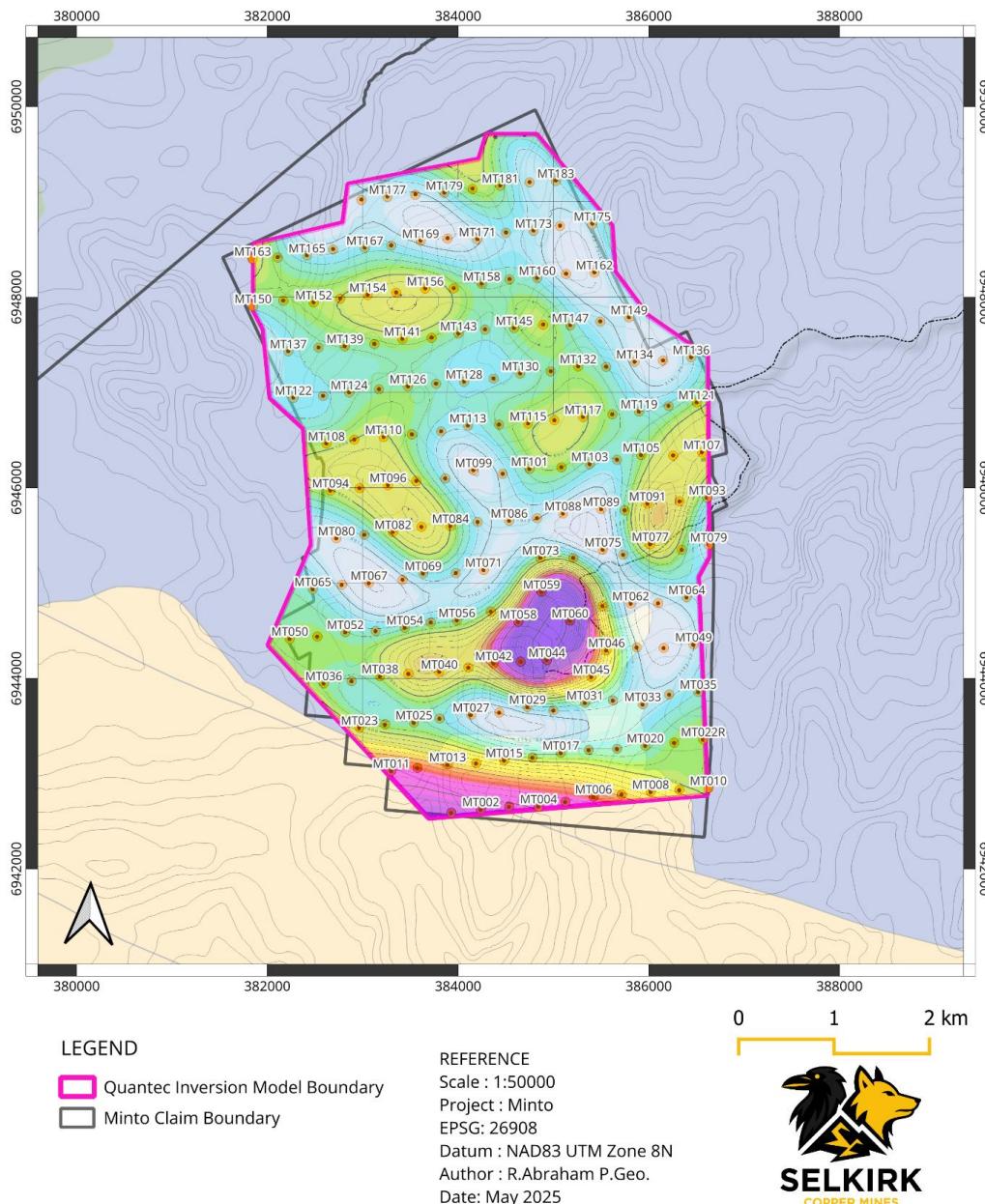
- New high grade lens discovery in the west area of Minto North (discovery hole 21EXP003)
- New lens discovery, 60 m below Minto East,
- A near surface (<75 m) discovery east of Minto East.
- Northern extension of Cu-Keel

Table 6-2: Summary of Significant Drill Intercepts from 2021-2022 Drilling


Hole ID	From	To	Width	Cu%	Au g/t	Au g/t	Year Drilled
21EXP002	432.42	432.97	0.55	0.41	NULL	4.9	2021
21EXP003	181	209	28	1.58	NULL	8.11	2021
21EXP003	196	209	13	2.77	NULL	15.11	2021
21EXP003	200	209	9	3.5	NULL	19.1	2021
21EXP004	147	143.04	1.04	0.58	NULL	2.1	2021
21EXP005	80	82	2	0.65	NULL	1.75	2021
21EXP005	260.3	262	1.7	0.24	NULL	1.22	2021
21EXP006	144.64	154	9.36	0.18	NULL	0.78	2021
21EXP007	404	410	6	1.15	NULL	5.75	2021
21EXP009	138.66	161.5	24.84	0.31	NULL	1.17	2021
21EXP009	434.85	437.25	2.4	0.5	NULL	2.66	2021
21EXP009	656.1	659	2.9	0.45	NULL	1.26	2021
21EXP009	667.5	668.92	1.42	2.23	NULL	6.3	2021

Hole ID	From	To	Width	Cu%	Au g/t	Au g/t	Year Drilled
21EXP010	360.54	366.36	5.72	0.7	NULL	4.06	2021
21EXP010	360.54	361.94	1.4	1.74	NULL	9.25	2021
21EXP011	170.82	172.21	1.39	4	NULL	48.9	2021
21EXP011	383.8	407	24	0.1	NULL	0.93	2021
21EXP012	291.1	297.37	6.27	0.64	NULL	1.4	2021
21EXP012	305	315.3	9.3	1.17	NULL	1.82	2021
21EXP012	306.9	311	5	1.76	NULL	5.62	2021
21EXP015	346.07	400.2	54.13	0.44	0.09	1.65	2021
21EXP015	356	361.1	5.61	0.81	0.12	2.5	2021
21EXP015	384.69	400.2	15.51	0.57	0.17	2.68	2021
21EXP015	398.2	400.2	2	1.7	0.7	9.45	2021
21EXP016	310.55	342.14	31.59	0.36	0.06	1.09	2021
21EXP016	349.46	356.48	7.02	0.48	0.08	1.7	2021
21EXP016	366.27	411.68	45.41	0.92	0.42	5.09	2021
21EXP016	366.27	377.97	11.7	0.49	0.11	1.7	2021
21EXP016	383	408.97	25.97	1.34	0.65	7.65	2021
21EXP016	399.65	408.97	9.32	2.72	1.25	15.08	2021
22EXP018	372.94	394.83	21.89	0.44	0.19	1.43	2022
22EXP019	347.72	365.73	18.01	0.55	0.14	1.57	2022
22EXP019	389.82	391.87	2.05	3.83	1.33	8.78	2022
22EXP019	415	430.1	15.1	0.79	0.2	3.44	2022
22EXP019	416.42	420	3.58	2.71	0.62	12.61	2022
22EXP020	144	154	10	0.27	0.04	1.08	2022
22EXP020	146	151	5	0.4	0.05	1.42	2022
22EXP021	258.8	292.13	33.33	0.23	0.03	0.73	2022
22EXP021	283.5	286.5	3	0.37	0.04	1.15	2022
22EXP022	480	487	7	0.22	0.03	0.97	2022
22EXP023	74.81	104.2	29.39	0.46	0.11	1.36	2022
22EXP023	74.81	85.45	10.64	0.54	0.12	1.73	2022
22EXP024	211.5	214	2.5	0.61	0.01	0.61	2022
22EXP024	237	248	11	0.42	0.22	2.08	2022
22EXP024	246	248	2	1.37	0.86	8	2022
22EXP024	257	267.1	10.1	0.28	0.09	1.26	2022
22EXP025	212.23	212.83	0.6	2.01	0.02	2.5	2022
22EXP025	224	229	5	0.67	0.22	2.9	2022
22EXP025	321.3	324	2.7	0.59	0.01	0.02	2022
22EXP026	509	511.38	2.38	0.41	0.05	1.87	2022
22EXP027	347	350	3	0.25	0.08	1.1	2022
22EXP028	283	289	6	0.23	0.05	1.29	2022
22EXP028	298	300.57	2.57	0.44	0.22	2.32	2022
22EXP029	386	389	3	0.26	0.26	1.33	2022
22EXP030	264	273.64	9.64	0.15	0.02	0.45	2022
22EXP031	84.84	97	12.16	2.11	1.62	8.64	2022
22EXP031	87.74	95	7.26	3.52	2.55	14	2022
22EXP032	549	558	9	0.37	0.28	1.7	2022
22EXP033	324.57	334.82	10.25	0.26	0.09	0.94	2022
22EXP033	324.57	327.68	3.11	0.45	0.14	1.53	2022
22EXP034	12.89	17.93	5.04	0.71	0.07	1.71	2022
22EXP034	51.06	53.9	2.84	0.65	0.06	0.86	2022
22EXP034	126	135.54	9.54	0.74	0.14	1.42	2022
22EXP034	127.04	131.45	4.41	1.3	0.28	2.37	2022
22EXP035	236.74	240.73	3.99	0.41	0.54	1.03	2022
22EXP036	61	83	22	0.55	0.09	1.58	2022

Hole ID	From	To	Width	Cu%	Au g/t	Au g/t	Year Drilled
22EXP036	115.55	133.99	18.44	0.41	0.09	1.26	2022
22EXP036	146.94	158.19	11.25	0.31	0.09	1.15	2022
22EXP036	261.78	268.59	6.81	0.38	0.04	1.2	2022
22EXP037	33.43	42.02	8.59	0.35	0.03	0.64	2022
22EXP037	121.33	125.22	3.89	0.33	0.01	0.5	2022
22EXP037	136.1	141.45	5.35	0.45	0.02	0.72	2022
22EXP037	213.91	218.41	4.5	0.39	0.04	1.15	2022
22EXP042	10	30	20	2.2	NULL	NULL	2022
22EXP042	35	38.65	3.65	5.05	NULL	NULL	2022
22EXP042	183	203	20	2.2	1.76	11.55	2022
22EXP042	199.35	203	3.65	5.05	4.87	29.68	2022


At the time of drilling, borehole electromagnetic (BHEM) surveys were conducted on 13 holes, successfully identifying Minto-style mineralization both in-hole and off-hole, necessitating plate modeling for future drill targeting.

Quantec Geoscience Ltd. (Quantec) was commissioned to conduct a SPARTAN MT survey, a deep-penetrating Magnetotellurics ("MT") survey over the Minto Mine Property as illustrated in Figure 6-2. The goal for the MT survey was to extend the geophysical coverage for the Minto Mine Property to depths below the extents of previous geophysical surveys, diamond drilling and current mining infrastructure to assess the potential for additional economic mineralization. Quantec completed the survey, consisting of a total of 184 SPARTAN MT sites, between July 10, 2022 and August 28, 2022 with results received by the Company in late November 2022.

(Source: Selkirk Copper, 2025)

Figure 6-1 Drilling done by Minto Metals Corp. in 2021-2022

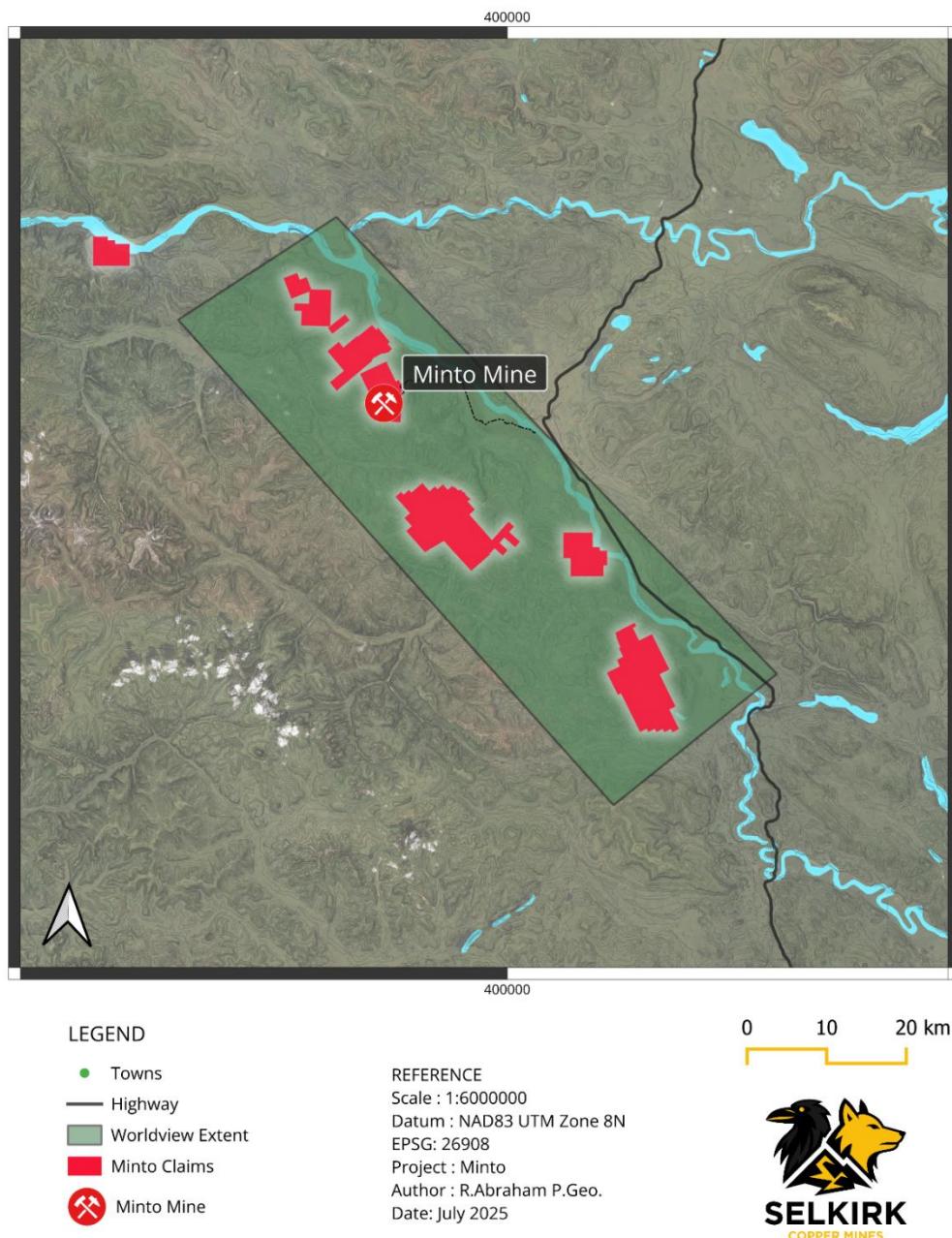

(Source: Selkirk Copper, 2025)

Figure 6-2 2022 Quantec Magnetotelluric (MT) Survey over the Minto Min property"

Lastly, as part of the first, district-wide evaluation, a remote sensing survey was carried out across the broader Minto Copper Belt area with the surveyed area shown in Figure 6-3. Exploration Mapping, of Dever, Colorado supervised the 2,599 km² Worldview-3 Spectral mapping satellite survey over the Minto Properties.

On May 12, 2023, Minto Metals announced that they had ceased all mining operations and were relinquishing care and control of the Minto Mine stie. The Yukon Government stepped in to manage

environmental concerns and suspended all activities authorized under the Quartz Mining License, declaring the Minto in Closure (Powell, 2023, Letter to Minto Metals CEO from YK Government). Price Waterhouse Coopers was appointed receiver during the asset sale and eventual liquidation. Since May 2023 until the time of this report, only surface reclamation activities have been conducted.

Figure 6-3 Regional Extent of Remote Sensing done across the Minto Mine Project

6.3 Exploration History of Regional Claim Blocks

Exploration in the region can be broadly separated into two distinct phases: the first occurring from 1970 to 1982 following initial copper discoveries in the region, and the second from 2006 to 2013. The first phase was conducted by various companies and the majority of claims staked have since lapsed. Exceptions include the Minto/DEF block, which encompass the Minto deposits, and the DUN, BOY, and W claims, which partially encompass the Carmacks Copper deposit currently owned by Granite Creek Copper.

Renewed interest in the area began in 2006 when prospector Shawn Ryan staked the WS, Ice (now part of the WS block), BC, Winter, Pepper, Toe, and Apex (now part of the Hun North block) claim groups (Figure 4-1). Following brief work programs in 2006, these claims were optioned to the BCGold Corp. in exchange for cash, shares and certain work commitments (Yukon Minfile). BCGold Corp. pursued a regional exploration strategy including geophysical and geochemical surveys and drilling programs, which are detailed below. In 2010, BCGold Corp. fulfilled the terms of its option agreement with S. Ryan and these claims were transferred to the company (Yukon Minfile).

MintoEx staked the Bond, MEL, and DEL claim groups in 2007 (Figure 4-1). In June 2008 Sherwood Copper, of which MintoEx was a wholly owned subsidiary, signed a memorandum of understanding with Northern Tiger Resources Inc. (Northern Tiger) whereby Sherwood Copper vended its 100% interest in the blocks along with their historical exploration database. This was in exchange for retained back-in rights to acquire a 65% interest in any of Northern Tiger Resources' properties located within a 50 km radius of the Minto Mine facilities (Yukon Minfile). The three claim blocks were subsequently returned to MintoEx.

6.3.1 History of Bond Block

The area encompassed by the current Bond claims was originally staked as the TUF 1-40 claims by United Keno Explorations in August 1972. It was later staked as the FUN 1-40 claims by Canadian Superior Exploration Ltd. in April 1974. The Bond 1-70 claims were staked in their current configuration in October 2007.

The following is a timeline summary of work programs which either completely or partially overlap the current Bond property.

1972

United Keno Explorations (a joint venture of United Keno Hill Mines Ltd, Falconbridge Nickel Mines Ltd and Canadian Superior Exploration Ltd.) explored the block with geological mapping and grid soil geochemical sampling. They identified two occurrences of chalcopyrite and minor galena spaced about 30 m apart within siliceous gneiss. Three hand trenches exposed chalcopyrite, bornite, azurite, malachite and galena, with the best result being 0.93% Cu in a grab sample.

1974

Canadian Superior Exploration Ltd. explored the FUN 1-40 block with geological mapping, grid geochemical soil sampling, and ground Direct Current Induced Polarization (DCIP) geophysical surveying. No anomalous results were identified, and the claims were allowed to lapse (Sinclair et al., 1974).

2008

An exploration program, including collection of 2 rock, 128 soil and 29 silt geochemical samples and geological mapping along geochemical traverse lines was conducted on the BOND 1-70 claims (Schulze, 2008). No anomalous results were returned, although further exploratory geochemistry work was recommended on unexplored areas of the property. In August 2008 the claims were officially transferred to Northern Tiger, and in November of that year Sherwood Copper merged with Capstone Mining Corporation (Yukon Minfile, 2021).

2009

An airborne gamma ray spectrometer and magnetic geophysical survey was flown over the entire Bond Block (Ouellette, 2009). The survey was flown at a 100 m line spacing. The survey identified several NNW trending moderate-strength magnetic “high” anomalies in the vicinity of the historic showings. Detailed mapping and soil sampling overtop of these anomalies was recommended.

2011

A 3 line-km ground DCIP survey was conducted (Ouellette and Pollries, 2012). One anomalous chargeability zone was identified and an expanded ground DCIP survey was recommended.

6.3.2 History of Del Block

The Del property was first staked as the DEL 1-84 claims in March 1974 by United Keno Hill Mines Ltd. (UKHM) to cover a Cu-Ag occurrence revealed during construction of an access road from Carmacks to the DEF claim block (Yukon Minfile). The considerable size of the block was selected due to proximity to the Williams Creek (now Carmacks Copper) deposit and mineral potential of the area. The claims were allowed to lapse following an initial work program. MintoEx re-staked the DEL block as the DEL 1-87 claims in July 2007. The property was then acquired by Northern Tiger Resources Ltd. in 2008, which expanded the claim block by staking the DEL 88-113 claims in August 2008. In June 2011, the DEL 114 - 123 claims were staked expanding the block to the west; these 10 claims have since lapsed.

The following is a timeline summary of work programs which either completely or partially overlap the current DEL property:

1974

Geological mapping and soil sampling revealed minor chalcopyrite and malachite occurrences along the access road and within a dioritic intrusion and proximal mafic and siliceous dykes. No further work was recommended, and the claims were allowed to lapse by UKHM (Schulze, 2008).

2008

A brief geochemical exploration program was pursued comprising 11 rock, 137 soil and 27 silt geochemical samples. Minor copper-in-soil anomalies were identified in the south-central portion of the block. A strong gold-in-soil anomaly in the northern portion of the block led to the expansion of the property with the staking of the DEL 88-113 claims. A follow-up program of expanded soil sampling was recommended (Schulze, 2008).

2009

An airborne gamma ray spectrometer and magnetic geophysical survey was flown over the entire DEL block (Ouellette 2009). Two magnetic “high” anomalies were identified in the centre of the DEL block and a follow-up soil geochemical survey targeting these was recommended.

2010

A brief one-day exploration program including geological mapping and collection of 57 soil geochemical samples was pursued on the DEL 90 claim (Ouellette and Pollries, 2011). A widespread copper-in-soil anomaly was identified with anomalous values ranging from 100-447 ppm Cu. An expansion of both the property and the soil geochemical grid to the southwest was recommended.

2012

An exploration program including a 3 line-km Ground DCIP and magnetic survey orientated at a line azimuth of 250° was conducted (Ouellette and Pollries, 2013). Weak to moderate coincident magnetic, chargeability, and resistivity anomalies were identified on the eastern portion of the grid. Further soil geochemical sampling and an expanded IP grid were recommended.

6.3.3 History of the Hun North Block

The HUN North block comprises the HUN 385-486, APEX 1-27, and MEL 8, 33-38, 58, 60, 61, 97, 99-102, 104, 106 claims. The APEX 1-27 claims were staked in June 2006. The MEL 8 and 33-38 claims were staked in July 2007 and the remaining MEL claims were staked in February 2006. All HUN claims were staked in February 2018.

The following is a timeline summary of work programs which either completely or partially overlap the current HUN North property:

1972

Soil sampling was performed over the WAIN 1-64 claims owned by Wainoco Oil Ltd. (Archer, 1972). The claims covered the present southwest edge of the HUN North group. A total of 1,012 soil samples were taken along a grid with a variable line spacing of 500' (152m) to 900' (275m) and a 200' (61 m) station spacing. These were analyzed for Cu, molybdenum (Mo), and Ag. All samples returned Ag values < 0.5 ppm and Mo < 1 ppm. A northwest-trending 3,000 by 400 feet (914 m x 61 m) linear zone of anomalous Cu values ranging from 40 to 100 ppm Cu was identified in the northwest corner of the claim block. No further work was performed.

1972

Soil sampling and geologic mapping were performed on the ORI 1-64 claims owned by NRD Mining Ltd. (Archer 1972) which overlap the central area of the present HUN North claims. Soil samples were analyzed for Cu, Mo, Ag. No anomalous Cu values were detected, and all Ag and Mo values were sub-detection limit.

1973

Soil sampling was performed on the Navajo claim group of which the western half was owned by Black Giant Mines Ltd. and the eastern half was owned by Tay River Mines Ltd. The Navajo group covered the present central HUN NORTH claims. A soil geochemical program comprising 1,800 samples, extending across parts of both properties, was completed and analyzed for Cu. Several northeast oriented linear trends of anomalous Cu values ranging from 40 ppm to 1,440 ppm Cu were identified in the southern area of the group (Nusbaum, 1974).

1974

The two portions of the Navajo claim group were combined into the single Navajo claim group, fully owned by Black Giant Mines Ltd. in 1974. A ground magnetometer survey was completed and followed by mechanical trenching and a diamond drilling program of 818 m of in 5 holes ranging in depth from 140 to 200 m. Minor geological mapping and prospecting were also completed. The trenching and drilling targeted coincident soil and magnetometer anomalies, and the drilling specifically targeted a zone of malachite and azurite mineralized biotite gneiss. The biotite gneiss was intersected in several holes; however, all grades were low with the best intersections being 0.26% Cu over 0.3 m and 0.10% Cu over 3.048 m (Nusbaum, 1974).

Most work from the 1974 season occurred south and southeast of the current Hun North property boundary, although the north boundary of the magnetometer survey covered part of the current property.

2006

A soil geochemical sampling program with Mobile Metal Ion (MMI) and Inductively Coupled Plasma ICP-MS geochemical analysis was conducted on the SPEAR 1-4 claims owned by S. Ryan, located within the current northwest corner of the Hun North property. The goal was to determine which soil geochemical method would best identify anomalous Cu values. A total of 5 ICP and 5 MMI soil samples were taken at identical points for comparison; however, due to a lack of data the results were deemed inconclusive (Ryan, 2007).

2007

A program of MMI soil sampling and prospecting was completed on the APEX 1-39 claims owned by S. Ryan and optioned to BCGold Corp. A total of four rock samples were collected on the APEX 28-39 claims, which are now covered by the Hun North claim group. All samples returned assays of < 0.03 g/t Au and < 0.01 % Cu (Doherty, 2007).

2008

A program of MMI soil sampling and prospecting was conducted on the APEX 1-39 claims. A total of 100 MMI soil samples were collected on the western block of the claims (APEX 28-39). A northwest oriented linear trend of anomalous values including one of 3,200 ppb Cu was identified in the southern part of the APEX claims (Newton, 2008).

A ground Induced Polarization (IP) survey was conducted on the SPEAR 1-12 claims. Three moderate chargeability anomalies were identified, none of which correlated to previous soil sampling (Newton, 2008).

The majority of the land covered by the present Hun North property was staked as the MEL claims by Northern Tiger who performed a program of soil and silt geochemical sampling and geologic mapping. As a result of a claim dispute between Northern Tiger and S. Ryan, Northern Tiger was not able to claim the full area. A total of 2 rock, 102 soil, and 16 silt samples were collected across the property, none of which returned anomalous results (Schulze, 2008).

2009

An airborne radiometric and magnetic survey was flown across the entire MEL block, encompassing both the Mel East and Mel West claim blocks and roughly matching the current Hun North property boundary. A ground IP geophysical survey was completed, together with soil sampling along the IP lines

in the northeast corner of the Mel East claim block. No anomalous results were noted from any survey method. East-west trending radiometric and magnetic trends were interpreted to represent regional geology (Ouellette, 2009).

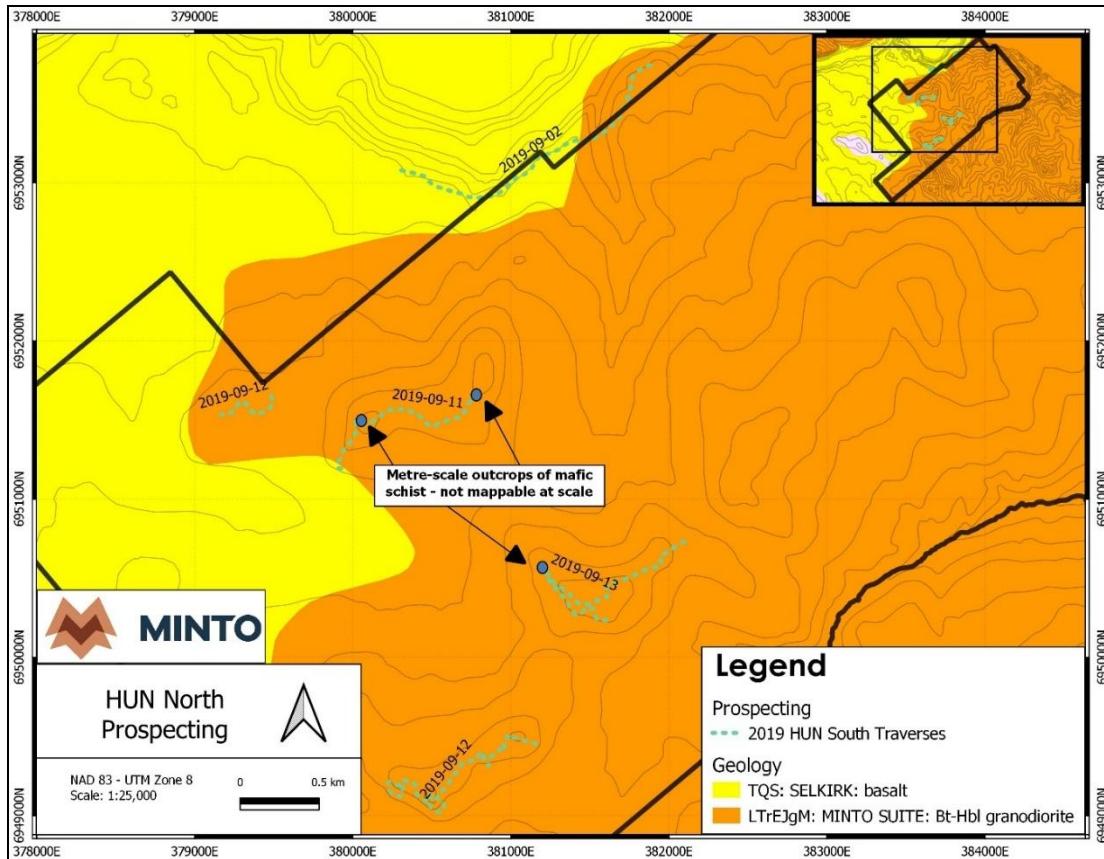
2009

A program including a ground IP geophysical survey, geological mapping, prospecting, soil sampling, and MMI soil sampling was completed on the APEX 1-27 claims. A total of 15.2-line kms of IP surveying was completed, in addition to 27 conventional soil samples and 273 MMI samples. Three zones of high chargeability and resistivity features, broadly coincident with moderate magnetic high features and Cu - Au MMI anomalies, were identified (Pautler, 2010).

2010

A program including a ground IP geophysical survey and soil, rock, and silt geochemical sampling was conducted over the Mel East and Mel West claim blocks. A zone of anomalous soil samples in the Mel East block underwent a subsequent ground IP geophysical survey. A total of 3 rock, 55 soil, and 1 silt samples were also taken. The IP survey returned no anomalous features. (Ouellette and Pollries, 2011). A total of 5 soils and 1 silt sample were collected on the MEL West claim block, none of which returned anomalous values (Ouellette and Pollries, 2011).

BCGold conducted a 795.53 m diamond drill program in three holes on the APEX 1-27 claims, following up on targets identified during the 2009 program. All holes failed to intersect mineralization (O'Brien, 2011).


2019

A 4-day prospecting program was conducted by a two-person prospecting team on the HUN North property from late August to early September of 2019. Access to the property was by helicopter from the Minto Mine airstrip. A total of 5 traverses totaling 7.4 km in length were completed, focusing on the ridges in the west-central property area. Locations of outcrops were recorded as point data, utilizing portable Garmin GPS units. Scarcity of outcrop presented difficulties to the prospecting campaign and no rock samples were submitted for geochemical analysis. Further data compilation of previous exploration work was also completed and digitized.

The program identified several metre-scale outcrops of strongly foliated quartz-plagioclase-biotite schist across the property. These outcrops may represent inliers of the Late Triassic Povoas Formation, the original host rock to the Minto-style copper-gold mineralization within the Minto Copper Belt. Further investigation is required to confirm the origin of these foliated outcrops.

2020

536445 Yukon Inc. conducted a brief 4-day prospecting program over the center of the Hun North claims. No rock samples were submitted for geochemical analysis (Kovacs 2020).

(Source: JDS Energy & Mining Inc., 2021

Figure 6-4 Prospecting Traverses, 2019 Program, Hun North

6.3.4 History of the Hun South Block

The Hun South claim block (HUN 1-384) were staked in their current configuration in January 2018, centered about 17 km southeast from the Minto deposit. The HUN South property encompasses ground previously covered by the FIL, HI, MOON, and OPRAH claim groups.

The following is a timeline summary of work programs which either completely or partially overlap the current HUN South property.

1976

The HI claims were staked in 1976 by United Keno Hill Mines Ltd. within the northeast corner of the current Hun South claims. Field work consisted of geological and geochemical surveys (Joy and VanTassell, 1977). Geological mapping identified a few narrow lenses of northwest trending biotite-rich gneiss. These rocks were described as strongly foliated malachite-stained quartz-feldspar-biotite gneiss apparently similar to the rocks within the DEF claims. Soil sampling on the entire claim block revealed two narrow anomalous zones with values between 382 - 510 ppm Cu, as well as other, isolated anomalies. Although Ag, lead (Pb), zinc (Zn), and Mo were also analyzed, no anomalous areas were indicated for any of these metals.

1978

United Keno Hill Mines Ltd. (UKMH) conducted a ground IP geophysical survey on a portion of the HI claims. A total of 1.5 km of IP survey were completed, and no chargeability anomalies were detected (Smith 1978).

1980

The Moon claims were staked in 1980, occupying the southwest corner of the current Hun South block. That year, UKHM conducted a small geological mapping program on parts of the block, identifying a few prominent outcrops of biotite-quartz-feldspar gneiss. The property-wide soil geochemical survey returned few copper values exceeding 30 ppm Cu. It was concluded that the topography and thick overburden diminished the survey quality. A few isolated anomalies occur within a northwest trend that correlates well with the strongly foliated mafic-rich gneiss (Leblanc and Joy, 1980).

The FIL claim block was staked in 1980 by UKHM along the Minto Copper Belt. The claims were located in the southeast corner of the present Hun South block.

1981

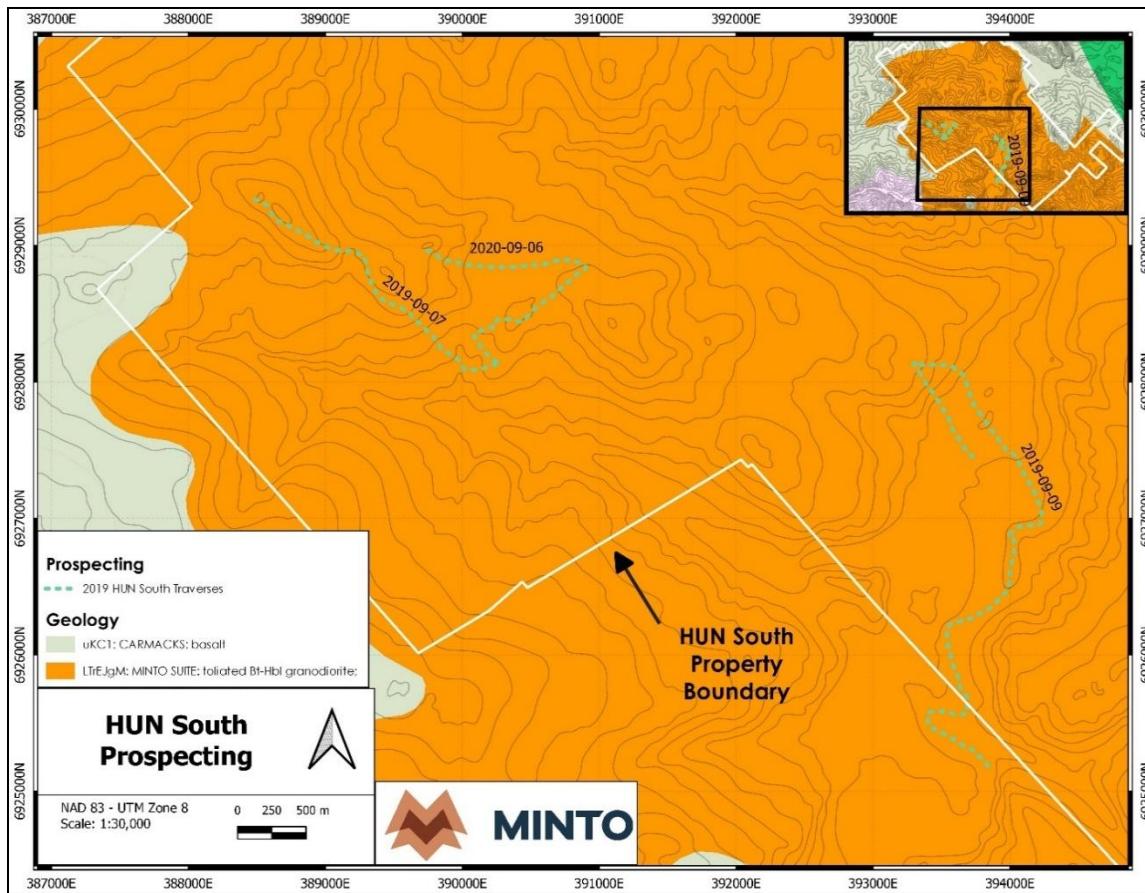
Reconnaissance geological mapping and geochemical surveying were completed across the Moon claims. Mapping confirmed the presence of quartz-feldspar gneiss across the entire property. The soil survey completed reconnaissance geochemical surveying of the property. The samples were analyzed only for Cu, returning generally low values, likely due to thick glaciofluvial cover. An airborne combined DIGHEM II electromagnetic (EM) and magnetometer survey was flown over the Moon claims as part of a more aerially extensive survey which included the FIL claim block. The survey comprised 946 line-km at a 200 m line-spacing. Data from the survey outlined a sharp contrast between the low-resistivity volcanic rocks and the high-resistivity granodiorite and gneiss. A small amount of follow-up work targeting the EM conductors did not lead to significant conclusions.

Field work on the FIL block comprised property-wide geological mapping and rock/soil geochemical sampling (Davidson and Joy, 1981). Geological mapping identified a large area of strongly foliated, northwest striking gneissic rocks with high biotite and magnetite content in the southeast corner of the property. Scattered traces of malachite were found in the gneissic fragments. A total of 27 rock grab samples, representing a mix of lithologies, were collected for assaying. These included variably foliated intrusive and undeformed volcanic rocks; however, no favourable assay values were returned. The geochemical sampling involved the collection of 17,046 grid soil samples at a 100 m line spacing and 30 m station spacing over the entire property. Most Cu anomalies identified from the survey were low order (50-100 ppm) and indicated a northwest trend. Based on these anomalies, five areas of interest were outlined, with Cu values of 100-187 ppm. The highest copper value obtained in the survey was 192 ppm.

The FIL claims were included in the same airborne electromagnetic DIGHEM II and magnetometer survey that covered the Moon claims. Various areas of interest were identified, including areas of low resistivity and high conductivity on the eastern side of the FIL claims.

2010

The Oprah claims were staked by Canadian Dehua International Mines Group Inc. (Dehua Mines) in 2010. The claim boundaries are roughly conformable to the current Hun South property. An airborne radiometric and magnetic geophysical survey, totaling 1,168-line km, was flown at a 100 m line spacing


and a 060° heading (Wanjin and Xie, 2011). The airborne geophysical survey and subsequent data processing were completed by Precision GeoSurveys Inc. Post-field program geological interpretation and mineral targeting work was done by Mira Geosciences Inc. and Aurora Geosciences Ltd. on behalf of Dehua Mines. Based on the integrated radiometric and magnetic geophysical survey, Mira Geosciences completed targeting for the surveyed areas using a Minto-style mineralization exploration model and criteria. By utilizing sparse regional stream sediment data and regional geologic data, in addition to new geophysical data, Dehua Mines identified several prospective northwest trending magnetic zones. Some of these zones are associated with anomalous potassium (K) values, interpreted to indicate prospective areas. Numerous targets were identified, mainly in the central area, based on proximity to faults, and the presence of magnetic and radiometric “high” features. Ten primary targets were identified, based on stream sediment values ranging from 10 to 15 ppm Cu, and on magnetic high features from 200 m to 300 m in extent.

2011

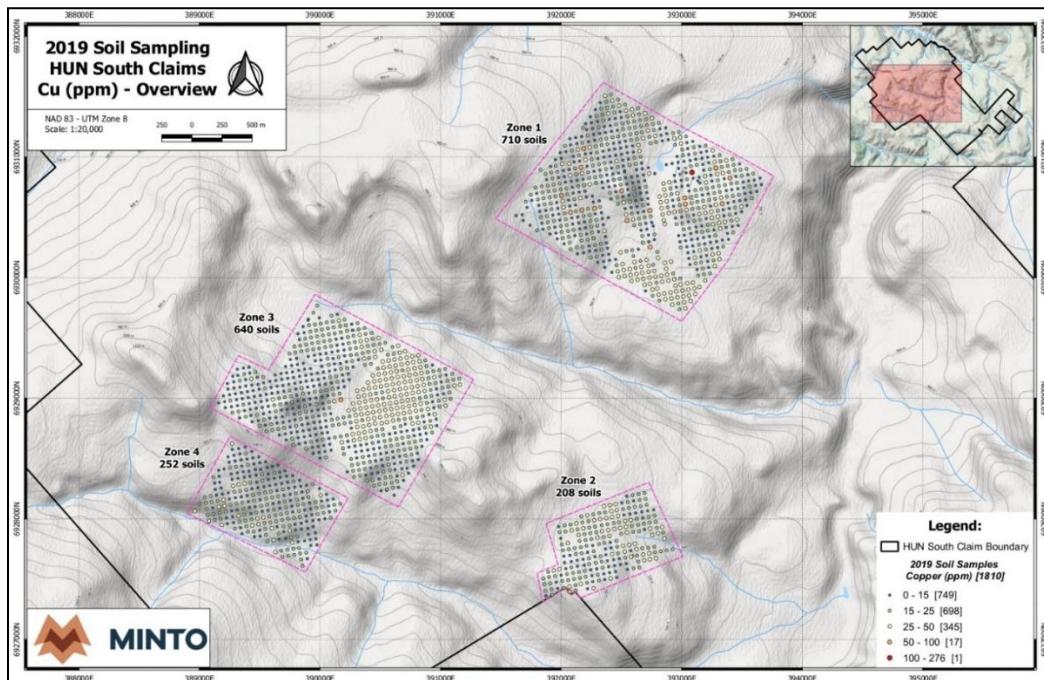
Dehua Mines carried out ground exploration on the claims, including targeted IP surveys and soil sampling, based on the 2010 geophysical survey (Xie, 2011). The IP ground surveys were conducted along 1.0 km long lines through the center of the claim block. Soil sampling was carried out at a 50 m spacing along IP lines. Statistical analysis on the soil results showed maximum values of 199 ppb Au, 3.43 ppm Ag, and 699 ppm Cu, respectively. The ground IP survey identified numerous high chargeability zones associated with anomalous Cu values and magnetic “high” anomalies.

2019

An eighteen-day exploration program of soil sampling and prospecting was completed by a five-person sampling team on the Hun South property in late August to early September of 2019. Access to the property was by helicopter from the Minto Mine airstrip. A total of 3 person-days comprising three traverses measuring a total of 10.2 km were dedicated to prospecting on the property. Scarcity of outcrop presented difficulties prospecting and no rock samples were taken. However, prospecting confirmed that previous regional mapping in the area was accurately done, and that the HUN South property is underlain mainly by Minto Group intrusive rocks.

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-5 2019 Prospecting Traverses, Hun South Property


6.3.5 Hun South Soil Geochemical Surveying

A total of 1,810 soil samples targeting the C-horizon and covering 5.54 km² were collected across four soil grids (Zones 1 through 4) in the central property area. The grids comprised a 50 m line spacing and 50 m station spacing. The sampling grids were centered on targeted geophysical anomalies. Location information for each sample station was recorded using portable Garmin GPS units, and additional information on sample horizon, sample depth, colour, texture, sample quality, and surrounding vegetation was recorded. Samples were submitted to the Whitehorse lab of ALS Geochemical laboratories for sample preparation and then sent to the Vancouver ALS Geochemistry lab for actual analysis.

6.3.5.1 Zone 1

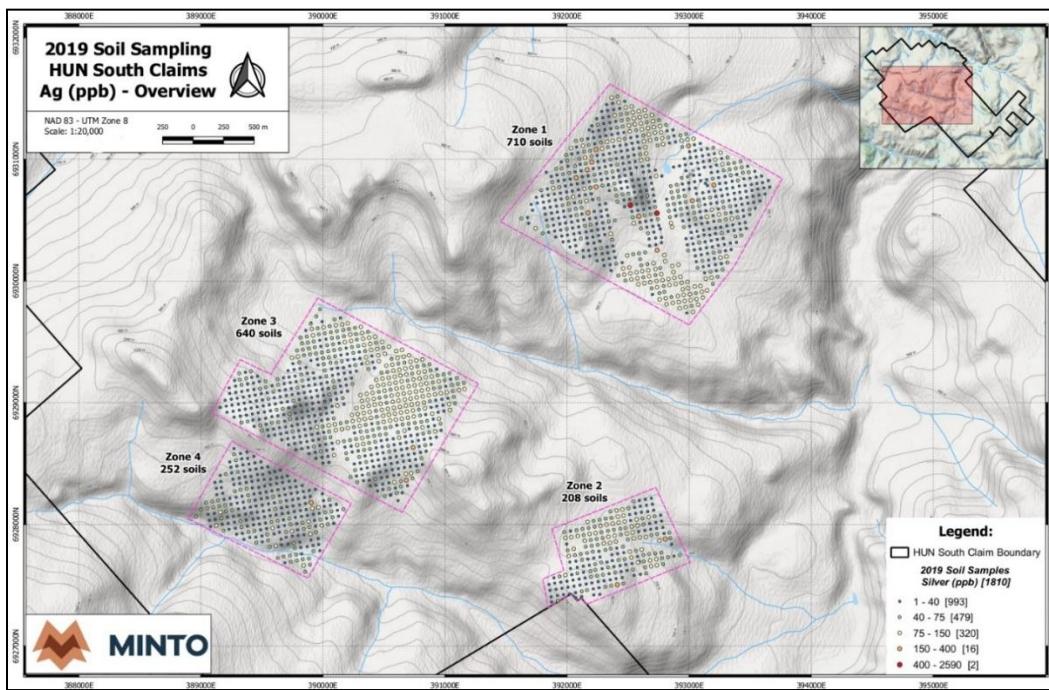

Zone 1 shows numerous copper-gold anomalous areas. The two most notable anomalous areas lie in the northeast and southeast corners respectively of the target area (Figure 6-6). The northeast area shows elevated copper in soil values between 25 to 100 ppm and correlates with an oval-shaped 200 m by 250 m magnetic “high” anomaly. Sporadic elevated silver values (Figure 6-7) were returned, although gold analysis did not return anomalous values (Figure 6-8). The southeast area outlines a large 500 m by 250 m wide area of anomalous Cu values between 25 to 50 ppm, coinciding with weakly elevated Au and Ag values.

Figure 6-9 shows the Au and Cu results overlain on 1st Vertical derivative imagery. The imagery indicates a WNW trend of stratigraphy as well as NNW trending features that may indicate structural occurrences. Both of these anomalous areas occur along the latter features, and the southern geochemical anomaly is centered on the intersection area of the WNW and NNW trending features.

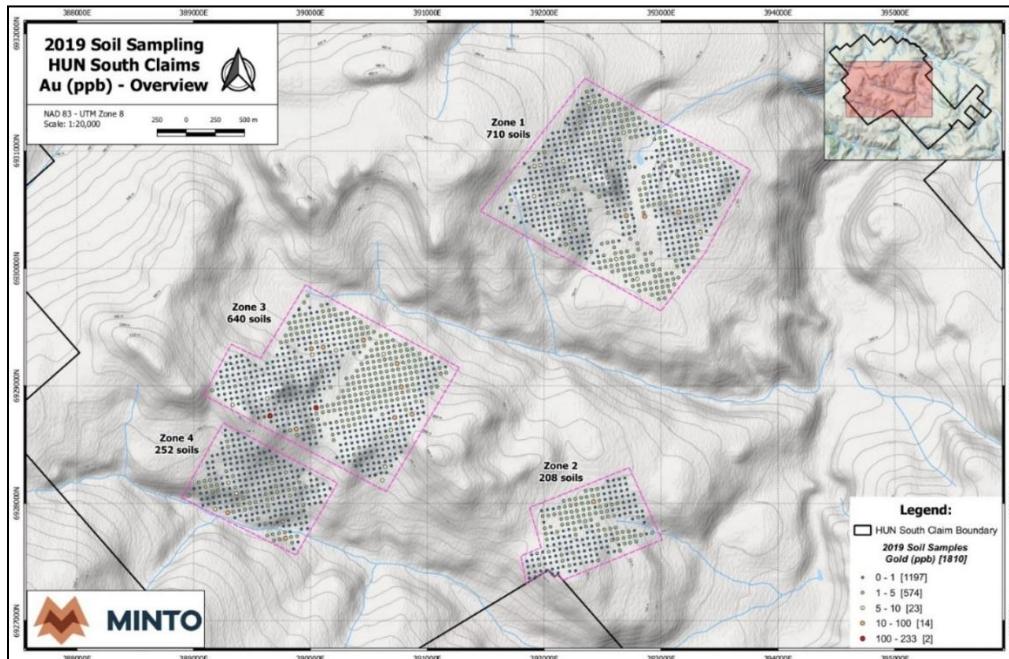

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-6 Copper Value Ranges, Soil Geochemical Surveying, Hun South

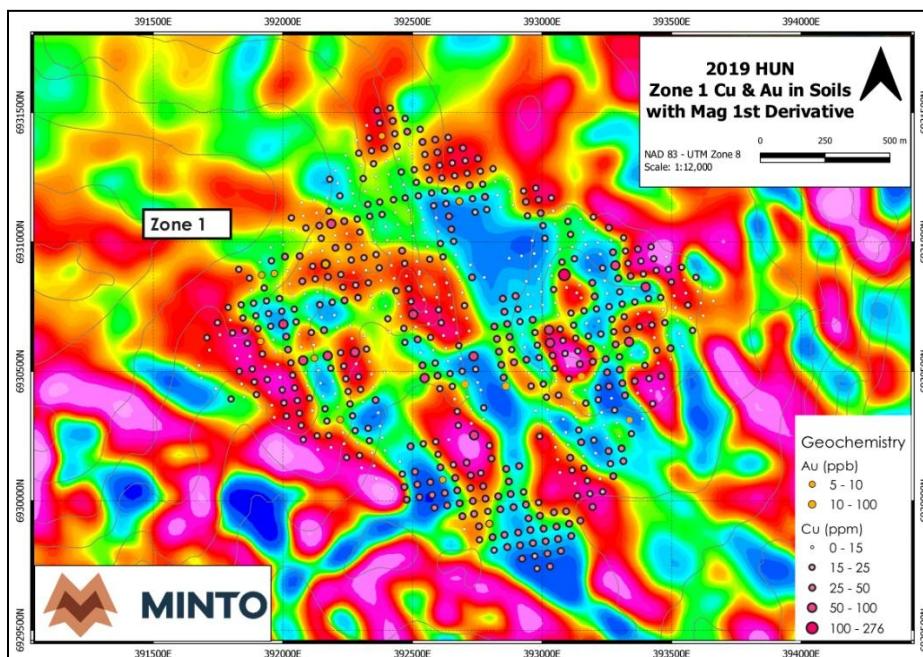
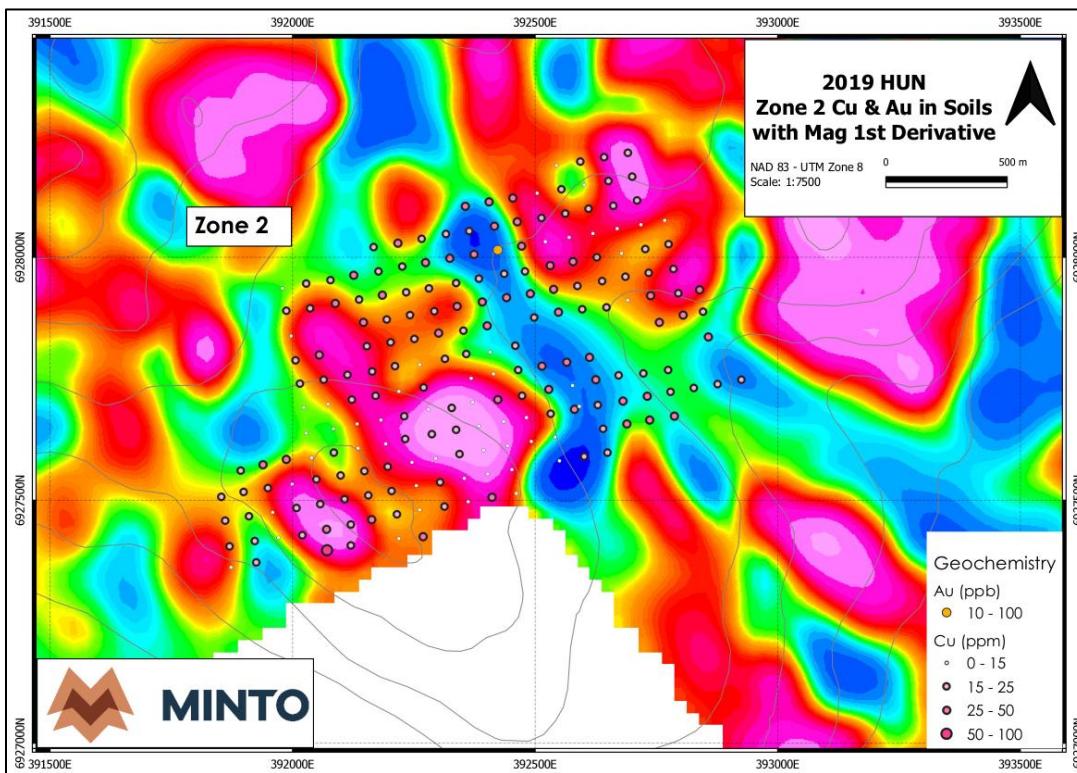

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-7 Silver Value Ranges, Soil Geochemical Sampling, Hun South

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-8 Gold Value Ranges, Soil Geochemical Surveying, Hun South



(Source: JDS Energy & Mining Inc., 2021)

Figure 6-9 First Vertical Derivative Image and Copper, Gold Soil Geochemical Values, Hun South

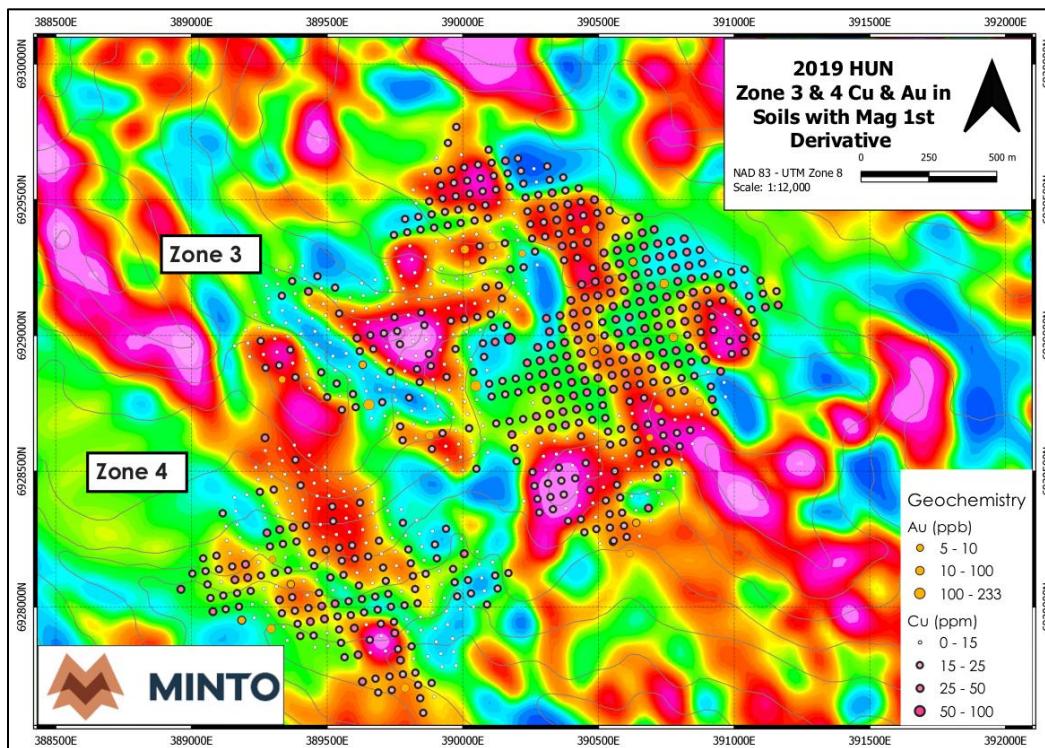
6.3.5.2 Zone 2

Geochemical sampling at Zone 2 revealed a WNW trending area of weakly to moderately elevated Cu values, associated with weakly elevated Au and Ag values, in the central property area. This occurs along a strong “low” feature returned from 1st Vertical Derivative imagery (Figure 6-10), itself coincident with a topographic low area. Airborne magnetic surveying revealed two magnetic “high” anomalies, the larger in the northeastern area of the zone and the smaller in the southwestern area. Elevated Cu values conform to flanks of the small valley and may represent some degree of downslope dispersion.

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-10 First Vertical Derivative Image and Copper, Gold Soil Geochemical Value Ranges, Zone 2, Hun South Block

6.3.5.3 Zone 3


Geochemical sampling on Zone 3 revealed a 1,000 m by 500 m long NNE-trending Cu anomaly, with Cu values consistently between 25 and 50 ppm Cu and Ag values between 75 and 150 ppb. The anomaly occurs along the east flank of a linear topographic low. The 1st Vertical Derivative imagery revealed WNW trending alternating high and low features, likely indicating stratigraphic trends, and also an NNE trending “low” feature coincident with the topographic low. Scattered anomalous Au values are spatially closely associated with these features, indicating they may represent structural corridors amenable to fluid movement.

Elevated metal values may be partially attributable to better soil conditions and lesser permafrost development along west-facing slopes of the small valley, allowing for ease of metal ion transport.

6.3.5.4 Zone 4

Geochemical sampling on Zone 4 occurred along the north side of a stream within an ESE trending valley. 1st Vertical Derivative imagery indicates the stream is coincident with a linear “low” feature, and that a similar, though more pronounced, feature extends along, and is oriented to, the center of the grid (Figure 6-11). Sampling returned intermittent weakly elevated Cu values from 25 to 100 ppm and scattered elevated Ag values from 75 to 150 ppb. Two anomalous gold values of 33.9 ppb and 20.1 ppb respectively were returned proximal to the stream. Elevated values along the south-facing flank of the valley may be attributable to better, permafrost-free soil conditions.

The large number of samples, regular sample spacing and complete coverage, except for lowland areas that may be riparian, should remove the majority of bias during geochemical sampling. Other aspects mitigating possible bias are the repetitive nature of sampling, consistent targeting of the C-Horizon, and standardized descriptions of each sample. However, the location of samples with respect to particular topographic settings may result in enhanced or subdued metal values returned. Geochemical anomalies along slopes tend to extend downslope beyond bedrock source boundaries due to downslope dispersion. Certain elements are more easily transportable downslope as a result of groundwater or surface water movement. Copper and arsenic are more easily transportable than gold, resulting in more widespread downslope anomalies of the former. Similarly, areas with permafrost development tend to return subdued metal values. Areas with very thin soil or talus fine cover tend to return higher gold values than areas having well developed soil.

(Source: JDS Energy & Mining Inc., 2021)

Figure 6-11 First Vertical Derivative Imagery and Copper, Gold Value Ranges, Zones 3 and 4, Hun South Block

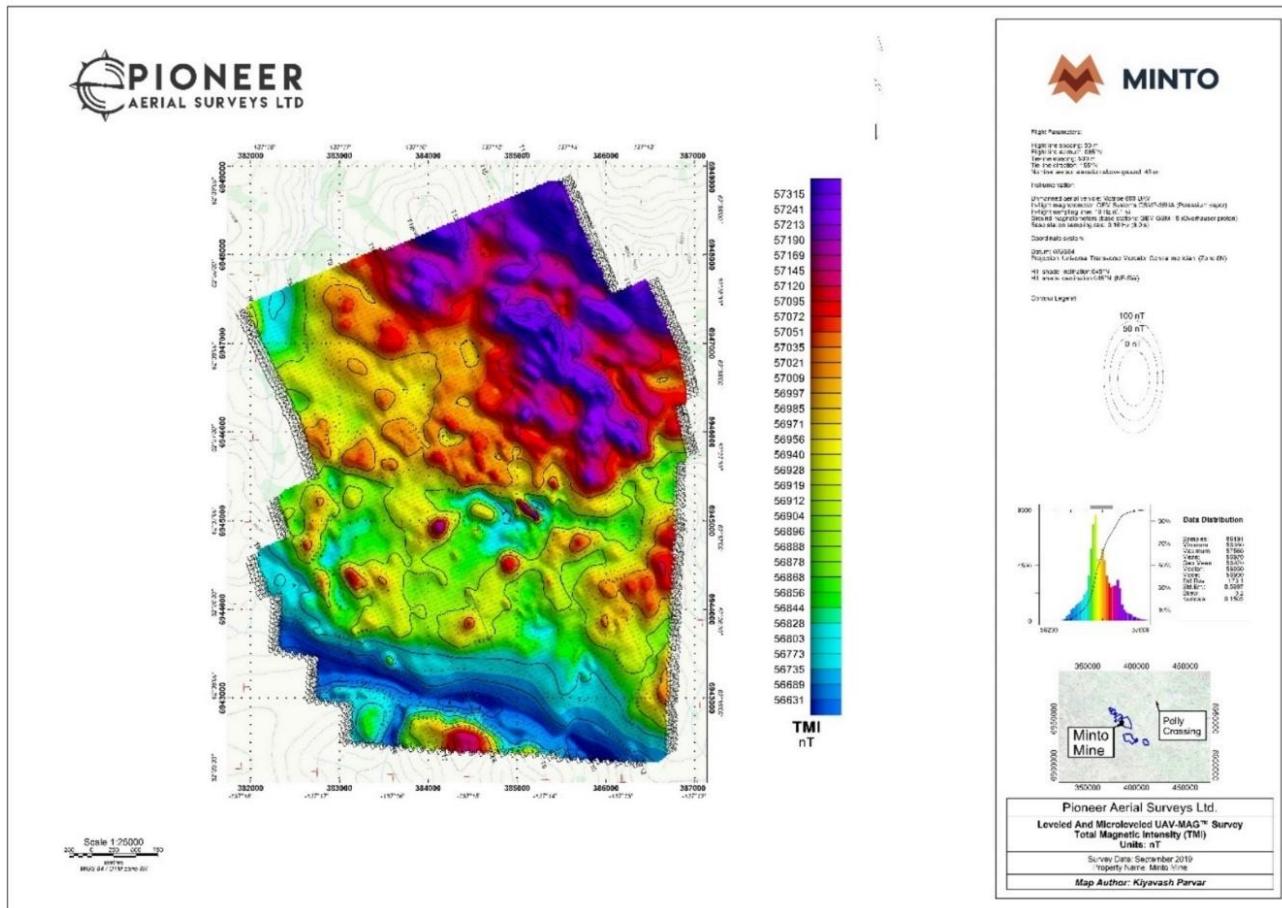
6.3.6 History of the WS Block

The current WS block (Williams South block) comprises the ICE 1-41 claims, SLEEP 13-18 claims, BC 35-144 claims, and WS 1-208 claims. All claims were originally staked by S. Ryan and acquired through an option agreement by BCGold Corp. The claims were then acquired by Minto Explorations Ltd. in 2020.

From 1970 to 1982, the area now within the WS Block saw limited exploration work by various operators, including the Mitsubishi Metal Mining Co. Ltd., Taseko Mines Ltd., Minto Mining Ltd., and United Keno Hill Mines Ltd. (Kikuchi, 1970; Guardia 1972; Mullan, 1974; Canam, 1982). Work during this period comprised geochemical soil surveys, geological mapping, and ground magnetometer surveys. The only discovery was of a limited malachite occurrence identified by United Keno Hill Mines Ltd. on the POON 1-4 claims, located in the southern portion of the current WS block. All claims staked during this period were allowed to lapse.

A second period of exploration work occurred from 2006 to 2008, following renewed interest in the area after S. Ryan re-staked the POON 1-4 claims as the ICE 1-4 claims in 2006. Exploration work during this period included MMI soil geochemical sampling, airborne magnetic geophysical surveying, ground DCIP geophysical surveying, and limited diamond drilling (Ryan, 2007; Doherty, 2008; Barrios and Newton, 2009). A diamond drilling program of 857 m in 4 holes was done on the ICE claims. Two holes intersected near surface mineralization, including 0.47 % Cu over 5.47 m in Hole ICE-07-04, and 0.55% Cu over 4.83 m in Hole ICE-07-02 (Doherty 2008).

6.3.7 Airborne Survey


MintoEx contracted Pioneer Aerial Surveys Ltd. (Pioneer) to conduct an airborne magnetic survey (UAV-MAGTM) covering the Minto property over the course of 15 days in September 2019. The surveyed area covered approximately 24 km² and included the mine site and its surrounding areas. Access to the takeoff points for the UAV survey unit was primarily by truck with one area being accessed by helicopter.

The principle airborne sensor used in the survey was a Gem Systems Canada GSMP-35U potassium vapor sensor that was mounted on a Matrice 600 Pro UAV platform. A stationary GEM GSM-19 Overhauser magnetometer was used as a base station. Flight lines were flown at an orientation of 065° at a 50 m line spacing, and tie lines were flown at a 500 m spacing and at a 335° orientation. A total of 554.71-line kms were flown, including 480.59 km in flight lines and 74.11 km in tie lines.

During post processing, airborne data was corrected for diurnal variation, adjusted for lag/heading bias and micro-levelled to mitigate the corrugation effect associated with gaps between the data lines. Final deliverable products from Pioneer included maps of Total Magnetic Intensity (Figure 6-12), 1st Vertical Derivative, and Analytic Signal. The tight spacing of survey lines enabled by the use of a drone platform, as opposed to traditional helicopter and/or fixed wing surveys, provided high-resolution magnetic data. The high-resolution data allows for more accurate targeting of anomalous magnetic features potentially associated with mineralization on the Minto property (Figure 6-12).

The Total Magnetic Intensity (TMI) map clearly indicates the WNW-trending fault separating the Minto pluton from Carmacks Group basaltic rocks to the south. A second WNW-trending structure extends across the central property area, marking the northern limit of the Minto mine deposit area. To the north of this, a series of strong northwest trending magnetic “high” features mark regional stratigraphic

trends. The subdued magnetic response immediately north of the pronounced southern fault is partially explained by the presence of a veneer of Carmacks Group conglomerates, sandstones and shales. Several magnetic high anomalies may indicate targets for "Minto-style" mineralization.

(Source: Pioneer Aerial Surveys Ltd., 2019)

Figure 6-12 Total Magnetic Intensity (TMI) Airborne Survey, Minto Mine Property

6.4 Minto Production History

The processing plant at the Minto Mine was constructed in 2006-2007 and commercial production was declared in October 2007 after a four-month commissioning period. The mine ran continuously until it was placed on care and maintenance in October 2018 for approximately 1 year before the resumption of mining in October 2019. The mine then ran continuously until Minto Metals filed for bankruptcy in May 2023 and has been on care and maintenance since.

6.4.1 Minto Production History: 2007-2011

This section has been reported in a public report titled "Competent Person's Report, Minto Mine – Yukon Territory, Canada" for Pembridge Resources plc, by Carl Schulze, PGeo, of Aurora Geosciences Ltd., and filed with the London Stock Exchange on August 9, 2019.

Sherwood Copper produced its first copper-gold concentrates on May 1, 2007, and expanded the mill to handle up to 2,400 tpd of copper-gold ore. The first concentrate was delivered to port facilities in

Skagway, Alaska on July 16, 2007, and Sherwood Copper officially announced it had reached commercial production on Oct 1, 2007, after a 4-month commissioning period.

Production and recovery rates increased through 2008 and 2009, as the mill expansion plans were implemented and mill facility optimization plans carried out. In 2010, operations were cut back for an extended period due to constraints in the tailings filtration facility. Positive processing results were due largely through the amenability of the feed to flotation at a coarse primary grind size (Mercer and Sagman).

Table 6-3 below lists the operating results from 2007 to 2011.

Table 6-3: Minto Production History from 2007-2011

Parameter	Unit	2007	2008	2009	2010	2011
Waste mining	Mt	9.26	8.37	11.13	7.97	10.44
Ore mining	Mt	0.75	0.83	1.15	1.49	0.73
Total material mined	Mt	10.01	9.53	12.28	9.47	11.17
Tonnes processed	Tonnes	238,446	809,426	1,031,190	915,051	1,258,308
Mill head copper grade	%	2.16	2.91	2.59	2.22	1.52
Mill head gold grade	g/t	n/a	1.28	1.14	0.93	0.6
Mill head silver grade	g/t	7.7	11.8	11.0	8.7	6.1
Copper recovery	%	85.1	91.9	92.6	90.3	87.9
Gold recovery	%	n/a	77.7	75.3	81.1	75.8
Silver recovery	%	77.5	84.6	81.9	80.6	78.6
Concentrate produced	Dmt	12,630	53,148	59,863	47,065	45,952
Concentrate grade - Cu	%	34.7	40.7	41.4	39.0	36.6
Concentrate grade - Au	g/t	n/a	15.9	14.9	14.7	12.4
Concentrate grade - Ag	g/t	113	152	155.8	137	132
Copper in concentrate	M lb	9.66	47.69	54.63	40.50	37.06
Gold in concentrate	Oz	n/a	27,202	18,828	22,284	18,348
Silver in concentrate	Oz	45,885	217,489	299,767	206,838	195,298

6.4.2 Minto Production History 2012 - 2018

In 2012, mining and stripping of the Area 2 pit was ongoing, with the first feed release occurring in the second quarter. Mill feed release continued as planned until Q4, when pit wall stability issues were encountered, resulting in reduction of higher-grade material from the pit wall, and replacement of this with lower grade stockpiled material. This resulted in a slight decrease in production.

In October, an amendment to Minto's Water Use License (WUL) was approved, and MintoEx began placing Area 2 tailings in the mined-out Main Pit. Also, development of the underground ramp to access underground workings at Area 2 commenced in Q3.

Exploration in 2012 consisted of core drilling and related activities, with total expenditures of CAD\$5.7 million. Capital expenditures stood at \$20.3 million, with activities focusing on surface infrastructure and

underground development, purchasing of mining equipment and supplies for underground operations, Phase V and VI environmental and socio-economic assessment and permitting, and a water treatment plant module and other environmental and geotechnical services.

In 2013, pit instability issues along the highwall of Area 2 pit delayed release of high-grade material until Q4, which accounted for 40% of the 2013 production. However, overall throughput and metal recoveries were strong. Development of the underground access ramp continued until Q4 when it was suspended following the decision to defer development and production of the “Area 118 underground” for one year. Production increased in 2013, offsetting a slight reduction of grade. Capital spending increased substantially to CAD\$50.1 million, including \$33.0 million for underground development, \$7.1 million for camp improvement, \$4.0 million for underground mobile equipment and \$2.5 million for further permitting initiatives.

In July 2013 Capstone submitted to YESAB an Environmental and Socio-Economic Assessment report for an operating plan for all remaining mineral reserves as identified in the 2012 Phase V/VI Pre-Feasibility Study (PFS). In December the proposal was deemed adequate and was advanced to the evaluation stage. The process for renewal of the Class A Yukon Water License commenced following approval by YESAB.

In 2014, Capstone completed mining of the Area 2 pit, then moved on to underground mining of the M-Zone, accessed from the pit bottom, and the Area 118 open pit. Mining of both of these was completed, and underground operation of the Area 118 deposit commenced to compensate for delays in the permitting process for the Minto North pit. Copper production increased somewhat, partly due to increased grades, however, as Area 2 was mined out copper production decreased. The mine plan changed towards a blend of higher-grade underground and lower grade stockpiled material. Capital spending in 2014 stood at CAD\$14.8 million, mainly on underground development, camp improvement, permitting and a new blasthole drill.

In 2015, operations focused on underground mining in Area 118, where realized grades exceeded budget. In early February, the Yukon Water Board requested additional information, resulting in processing mineralized material from the Area 118 underground and stockpiles, while awaiting issuance of the Water Use License (WUL) to facilitate open pit mining of the Minto North deposit. The WUL, granted in early August, completed the final phase of permitting for all mineral reserves identified in the 2012 Phase VI Pre-Feasibility Study. Following this, stripping commenced on the Minto North deposit, and mill feed began to be extracted in December.

Copper production in 2015 decreased due to lower throughput and lower recoveries resulting from an increase in partially oxidized material in the mill feed. Cash costs increased to CAD\$2.54 per pound of payable copper, while copper prices continued on a downward trend. Capital spending, excluding stripping, totaled CAD\$7.6 million, the majority on underground development and a ventilation system for Area 118. Stripping costs for Minto North stood at CAD\$15.6 million.

In 2016, mill throughput, head grades and recoveries, mainly from the Minto North deposit, all exceeded expectations, roughly doubling production of copper, gold and silver from 2015. In Q4 the mill also processed stockpiled material. The increase in recoveries resulted from a greater proportion of sulfide material, rather than oxide, in the mill feed.

Capital spending on stripping totaled CAD\$6.6 million, only 60% of forecast expenditures. This was partly due to utilization of some stripping waste for progressive reclamation, resulting in an offsetting of \$3.5 million in stripping costs as reclamation activities. Capital spending excluding stripping stood at \$0.6 million.

As of the end of Q4, 2016, Capstone reported it had an approximate 3-year mine life remaining post-2017 at the Minto Mine. Continued production would depend largely on the copper price outlook in the second half of 2017.

By early 2017 Capstone began planning to curtail actual mining operations, focusing on processing of stockpiled material, with plans to place the mine on care and maintenance in November 2017. Improvement in copper prices caused Capstone to decide to continue operations until at least mid-2021, and also in a decision by the Company to continue extraction through incorporation of several previously impaired bodies into the mine plan. Significant development and stripping costs in H2 of 2017 were incurred, to facilitate mine life extension and to benefit future periods.

To facilitate the mine life extension, Capstone issued 6.8 million shares valued at \$7.5 million to Wheaton Precious Metals Corp on October 13, 2017, in exchange for a modification in the precious metal purchase agreement whereby Capstone would receive increased gold revenues if copper prices fell below USD\$2.50/lb. In addition to the base price of US\$300 per oz of payable gold (subject to the annual inflation clause explained in Section 6.3.1), there is an additional “Gold Top Up Payment” based on the following formula:

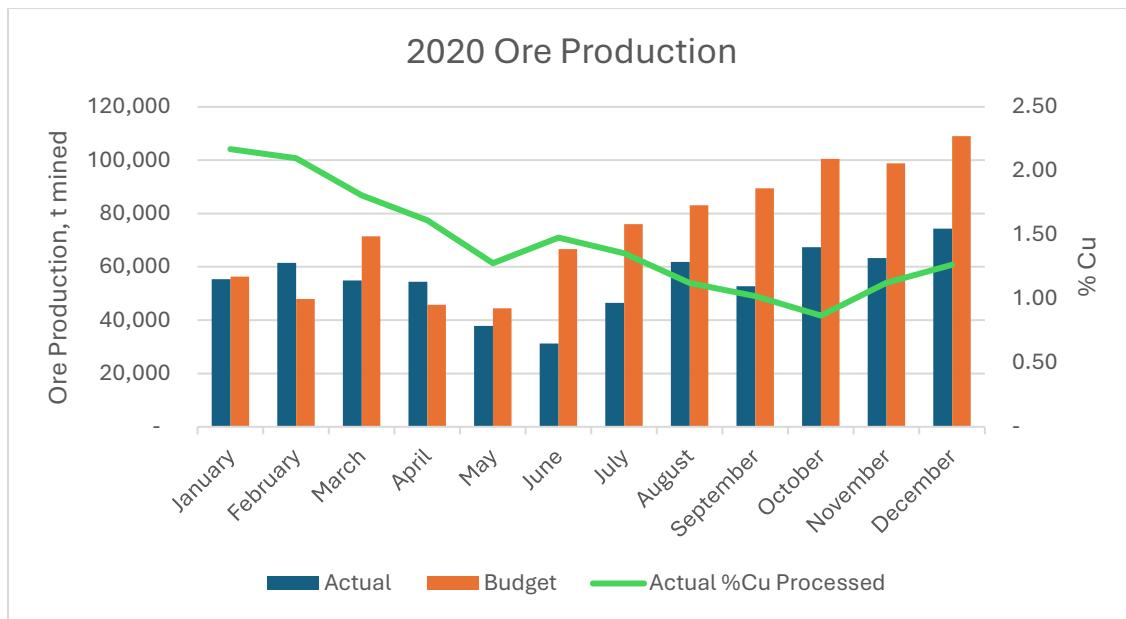
$$\frac{\$900 \times (\text{Ceiling Price} - \text{Actual Price})}{(\text{Ceiling Price} - \text{Floor Price})}$$

where the Ceiling Price is set at US\$2.50/lb copper, and the Floor Price is set at US\$1.75/lb copper.

This represents a simple sliding scale of payments ranging from a maximum of \$1,200 at US\$1.75/lb copper, to a minimum of US\$318/oz at US\$2.50/oz copper (both numbers subject to the annual inflation). The Gold Top Up Payment is capped at the greater of (i) the market price per ounce of gold less US\$300 plus the annual inflation, and (ii) nil.

Production by underground mining was disrupted due to changes in the sequencing of mining and processing. Decreased underground production resulted in higher utilization of “Partially Oxidized” (POX) material and lower grade stockpiled material, impacting overall grade and recovery. Underground mining was also disrupted by upgrading of the emergency response capacity in the areas of current stoping while development of Area 2 continued. In Q3, the mill feed was supplemented with POX from Area 2, Stage 3 open pit, as well as from stockpiles, resulting in lower head grades and recoveries.

On October 11, 2018, Capstone made the decision to immediately place the Minto mine in care and maintenance, following the decision by Capstone and Pembridge to terminate the agreement for the sale of the Minto Mine. Pembridge was unable to provide the necessary financing to complete the transaction, due to unfavourable equity market conditions. All mining operations ceased immediately, and mineral processing activities ceased on October 19. Care and maintenance expenditures were


estimated at US\$5 million for each of 2018 and 2019, and US\$4 million per annum thereafter. Approximately 200 employees and contractors were affected, although a core team of no less than 8 employees were retained during the care and maintenance phase to oversee the site and ensure environmental monitoring and legal requirements were met.

6.4.3 Production History from 2019 to 2023

Production at the Minto Mine resumed in October 2019, with milling operations occurring on a 2-weeks-on, 2-weeks off basis through February, 2021. By the end of Q4, 2019 Pembridge had received USD\$7.1 million for production in October and November, pursuant to the offtake agreement between Sumitomo Canada Limited ("Sumitomo") and MintoEx dated 22 July 2019 (the "Offtake Agreement"). This states that Minto is to receive a 90% advance payment for copper concentrate produced by each month-end. All production was from the Minto East deposit. At the end of Q4, mining of Minto East was expected to be completed by Q2 of 2020, at which point operations would move on to the Copper Keel deposit (LSE announcement, Jan 9, 2020). The total capital expenditure was CAD\$2.5 million in sustaining capital.

In 2020, Production focused on mining from Minto East and Copper Keel Main - Zone 57. Minto East at this point completed the majority of the required ore development earlier in the year and swapped focus to production ore until depleting the zone in February of 2021. Copper Keel Main – Zone 57 was focused on establishing production fronts up to August to prepare for the depletion of Minto East. Between August and November, Minto East and Copper Keel Main contributed equal amounts to total ore production from the mine with a steep drop from Minto East in December where Zone 57 became the primary zone producing ore. As Zone 57 became the primary source of ore in December, development began to ramp up in Zone 56 and 62 to prepare for 2021.

At the end of the 2020 fiscal year, the mine processed 629,078 tonnes and produced approximately 17.8 million pounds of payable copper, 7,700 ounces of gold, and 67,500 ounces of silver. Mill recoveries were 93.4%, 74.2% and 77.9% for copper, gold and silver respectively. The total capital expenditure was CAD\$6.6 million consisting of CAD\$4.8 million in growth capital and CAD\$1.8 million in sustaining capital. A portion of the sustaining capital was focused on the site water management as the mine struggled with contaminated water buildup in the tailings facility. This was a critical issue for meeting environmental standards in the region and continued into 2021. The tonnage mined in 2020 compared to budgeted production by month is summarized in Figure 6-13.

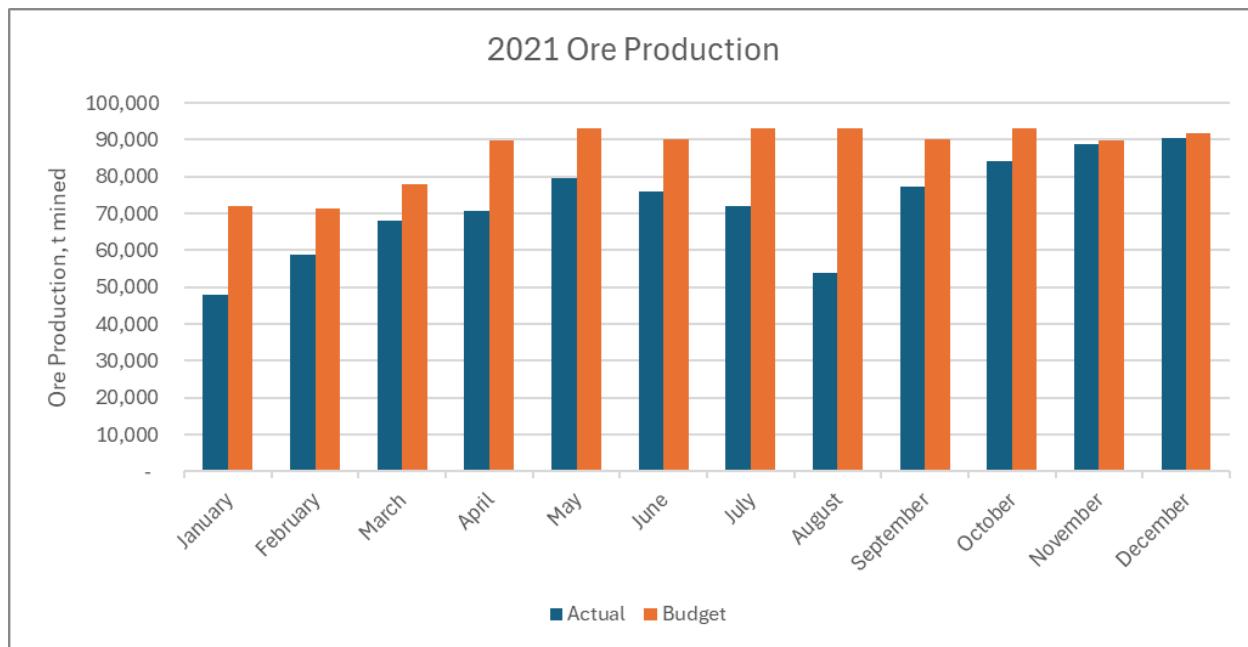

(Source: Selkirk Copper, 2025)

Figure 6-13 Production in 2020 – Actual compared to Budget

In 2021, the primary mining zones were within Copper Keel Main consisting of Zone 57, Zone 56, and Zone 62. Minto East was already fully developed and moving towards end of life for production and Minto East 2 was just beginning capital development. Ore production for the year was provided by Minto East, Zone 57, and Zone 62. Zone 57 accounted for 90% of total ore production for the year while the remainder was produced from the other zones. Minto East ore production depleted in February, Zone 62 began ore development in July and ore production in November, and lastly Zone 56 began ore development in October.

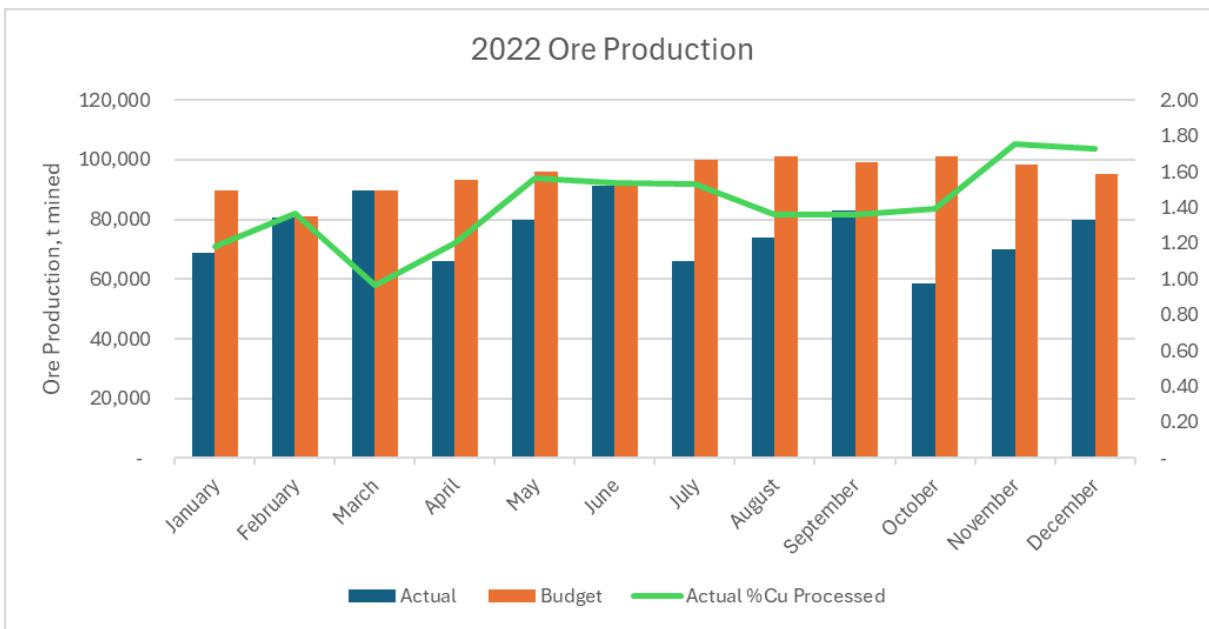
At the end of the 2021 fiscal year, the mine processed 903,498 tonnes and produced 26 million pounds of payable copper, 11,783 ounces of gold, and 135,354 ounces of silver. Mill recoveries were 93.2%, 74.0% and 83.1% for copper, gold and silver respectively. This was a notable increase in production from 2020 and was primarily due to increased daily production throughout the year with November and December averaging 3,000 tpd along with increased head grades in gold and silver. The total capital expenditure was CAD\$6.3 million in sustaining capital. The capital expenditure included costs to resolve the site water management which continued to be an issue from the previous years.

The tonnage mined in 2021 compared to budgeted production is summarized in Figure 6-14.

(Source: Selkirk Copper, 2025)

Figure 6-14 Production in 2021 – Actual compared to Budget

In January of 2022, the Yukon government conducted a comprehensive assessment of Minto Mine's environmental liabilities and determined that the financial security held for the site was insufficient. Consequently, they mandated an increase in the security deposit of CAD\$32 million to be paid by April 5, 2022. This increase was primarily due to concerns over water management and treatment at the mine. The company struggled to meet the new financial obligations, leading to ongoing discussions with the Yukon government and Selkirk First Nation throughout the year.


The primary mining zones in 2022 were within Copper Keel Main, Minto East 2, and A2. Copper Keel Main consisted of Zone 35, Zone 56, Zone 57, and Zone 62 for the year. Zone 56 ore development continued from January to August coinciding with ore production for this period of time accounting for ~6% of total ore production. Zone 57 was primarily stope production and contributed ~65% of total ore production. Zone 62 consisted of ore development and stope production and was the secondary source of ore contributing the remaining ~29% of total ore production. Minto East 2, Zone 35, and A2 were all new capital development zones for future production fronts.

At the end of the 2022 fiscal year, the mine processed 878,380 tonnes and produced approximately 28.9 million pounds of payable copper, 12,168 ounces of gold, and 136,000 ounces of silver. Mill recoveries were 94.1%, 73.9% and 83.5% for copper, gold and silver respectively. This showed an increase in production from 2021. In the second quarter (Q2), there was an 8-week mill shutdown due to significant snow melt 417% above normal. The 4th quarter (Q4) decrease was attributed to a mill shutdown in December due to extremely cold weather and equipment reliability issues.

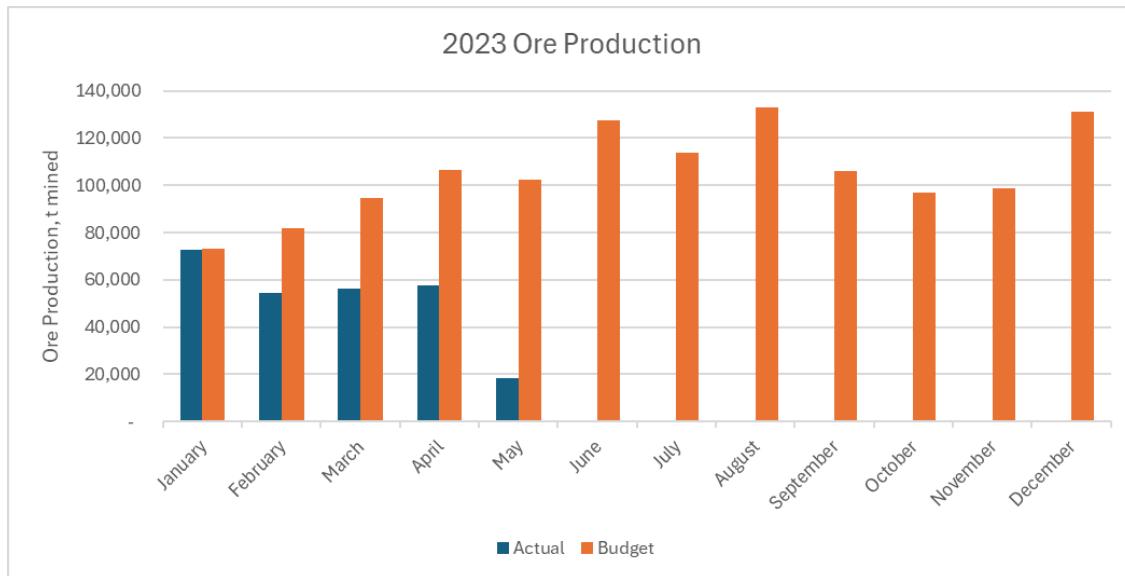
The total capital expenditure in 2022 was CAD\$23.4 million consisting of CAD\$7.8 million in growth capital and CAD\$15.6 million in sustaining capital. In particular, CAD\$8 million of the capital was utilized for water treatment enhancements to enable water discharge through the winter months for the first

time in Minto's history. The primary reason for this spending was to assist with the significant surface snowpack that built up in the winter which would inundate the tailings storage facility during the melt. Additionally, this was completed to align with the concerns from the Yukon government and Selkirk First Nation regarding the environmental liabilities security deposit.

Tonnage mined in 2022 compared to budgeted production is summarized in Figure 6-15.

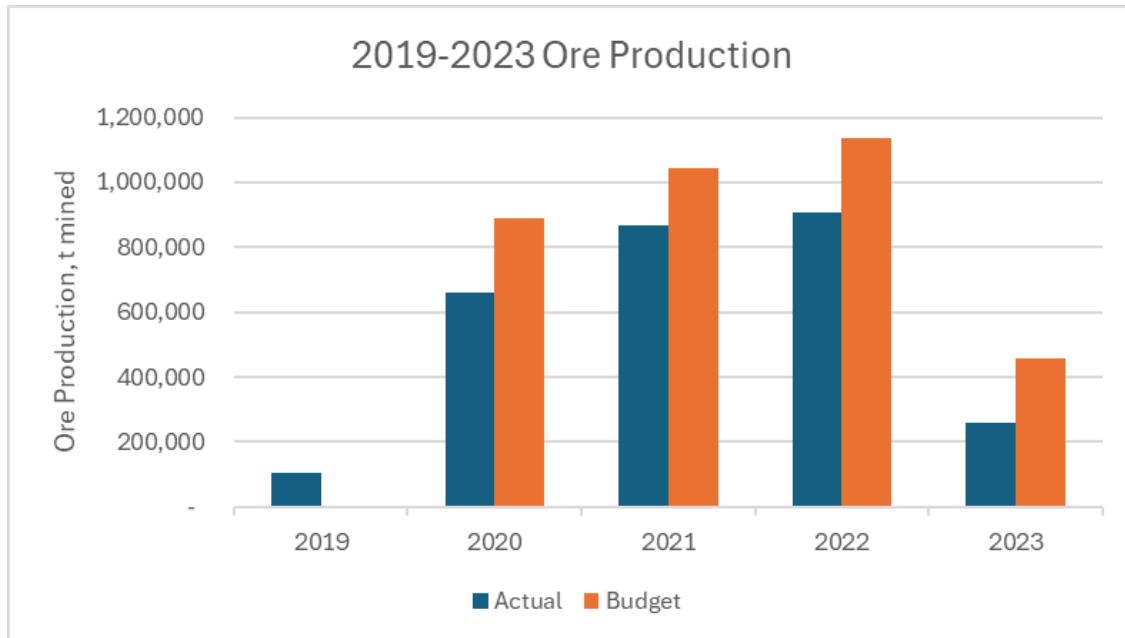
(Source: Selkirk Copper, 2025)

Figure 6-15 Production in 2022 – Actual compared to Budget


In 2023, average monthly production decreased significantly from the previous year. The reason for the drop was primarily due to a lack of development in the previous year leading to a lack of production drill inventory, production fronts, and distance between production fronts resulting in excessive travel times for equipment. Additionally, copper and silver grades were dropped significantly throughout the mine from the previous year.

The primary mining zones were within Copper Keel Main, A2, and 118. Copper Keel Main consisting of Zone 56, Zone 57, and Zone 62 for the year. Zone 56 continued with development and stope production accounting for 26% of the ore production. Zone 57 depleted stope production in February and accounted for 10% of the ore production. Zone 62 was the primary ore production area for the remaining months operating and accounted for 56% of ore production. A2 primarily focused on development to unlock future production fronts and accounted for 5% of ore production. Lastly, 118 began development in March to unlock future production fronts and accounted for 3% of ore production.

The Yukon governments \$32 million increase in security deposit for environmental liabilities along with Minto Mines inability to secure funding resulted in the underground mining operations entering care and maintenance on May 11, 2023. PricewaterhouseCoopers (PwC) subsequently took control of Minto


mine in receivership. On May 13, 2023 the Yukon court then authorized PwC to commence liquidation plan and engaged Maynards and entered into an agreement for the auction of Minto assets.

Production in 2023 until closure compared to budgeted production is summarized in Figure 6-16. Production from 2019 through 2023 closure (in May 2023) is plotted in Figure 6-17 illustrating increasing production throughout this time period, with production over the life-of-mine plotted in Figure 6-18.

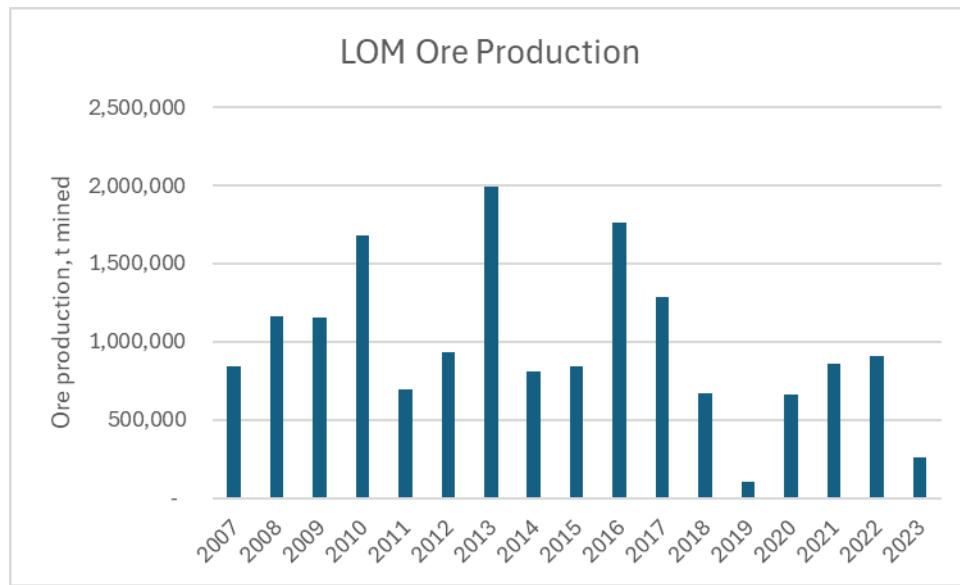

(Source: Selkirk Copper, 2025)

Figure 6-16 Production in 2023 – Actual compared to Budget. Production stopped May 11, 2023

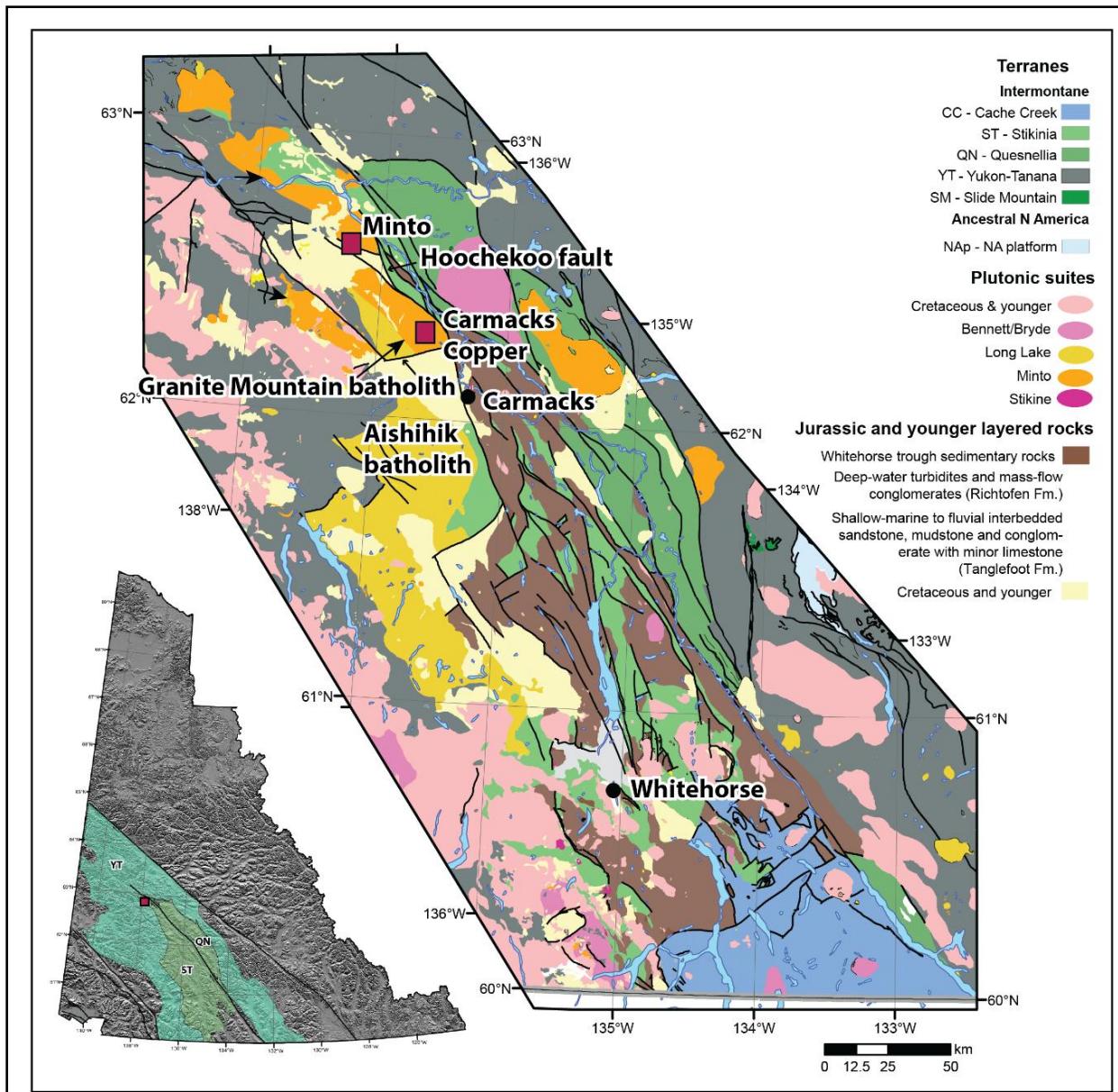
(Source: Selkirk Copper, 2025)

Figure 6-17 Production in 2019-2023 – Actual compared to Budget

(Source: Selkirk Copper, 2025)

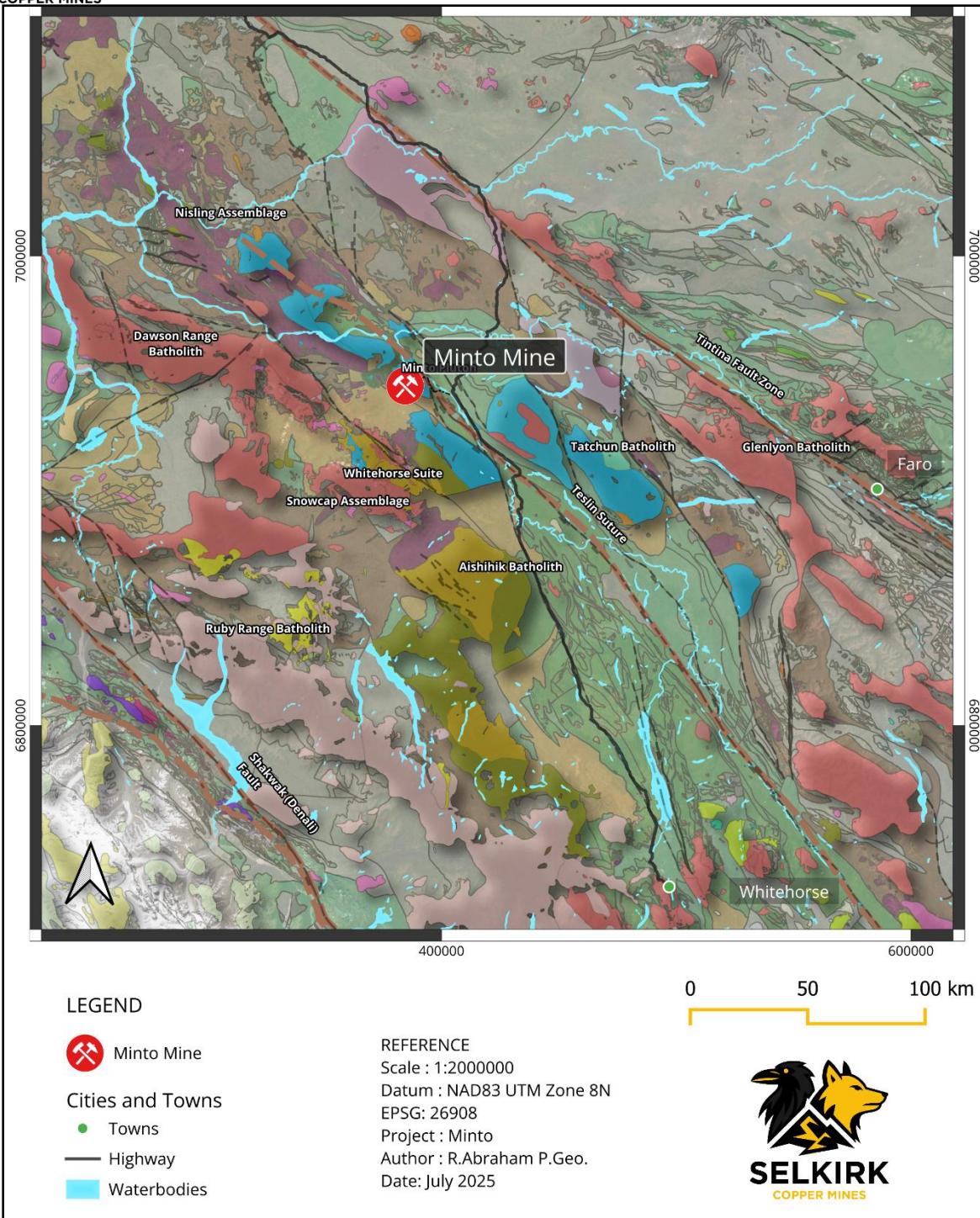
Figure 6-18 Production over the Life of Mine at Minto

7.0 Geological Setting and Mineralization


This section has been modified and updated from the previous NI43-101 PEA report (JDS, 2021) which in turn had been provided by Nikolett Kovacs, MSc, and Exploration Manager for MintoEx in 2021.

7.1 Regional Geology

The Minto property is located within the northwest-trending Minto Copper Belt (Kovacs et al., 2020), central Yukon, in the northernmost apical junction of the Stikine and Yukon Tanana terranes. The Minto Copper Belt hosts the Minto mine, the Carmacks Copper deposit, the Stu prospect, and several other Cu-Au-Ag occurrences.


Mineralization is hosted within Late Triassic variably deformed and metamorphosed rafts of intermediate- to mafic-volcanic rocks that are engulfed by intrusions of Late Triassic to Early Jurassic Minto plutonic suite (204-194 Ma) (Kovacs 2018; Kovacs et al., 2020). The Minto suite, along with the Stikine suite (ca. 218-208 Ma) the Long Lake suite (ca. 192-180) and the Bennett-Bryde suite (Ca. 178-167 Ma), are thought to be correlative to the Mesozoic calc-alkaline to alkaline plutons known to host significant Cu-Au+/-Ag+/-Mo mineralization across British Columbia (Colpron et al., 2015). The Minto plutonic suite occurs as a series of large plutons intruded along the contact between mid-Paleozoic rocks of the Yukon-Tanana terrane and Late Triassic rocks of the Lewes River Group of the Stikine terrane (Stikinia) (Hood, 2012; Figure 7-5). These intrusions extend from the B.C. border, west of Whitehorse, in a northwesterly trend up to the Alaskan border.

Along the western margin of the Minto pluton, the Yukon-Tanana terrane is represented mainly by orthogneiss of the Late Devonian-Early Mississippian Simpson Range plutonic suite (Mortensen, 1992; Hood, 2012). Stikinia arc rocks, east of the Minto pluton, include the volcanic and sedimentary rocks and local subvolcanic intrusions of the Late Triassic Povoas Formation (229 – 217 Ma) of the Lewes River Group (Hart, 1997). The Povoas Formation in Yukon is characterized by variably deformed, sub-greenschist to locally amphibolite facies metamorphosed augite porphyritic basalt, volcaniclastic rock, and hornblende gabbro (Tempelman-Kluit, 1984, 2009; Hart, 1997; Hart and Radloff, 1990) and lies in fault contact along the eastern margin of the Minto pluton. To the south, the Minto pluton lies in east-west trending normal fault contact with Late Cretaceous Carmacks Group (73 – 68 Ma) stratigraphy that consists of mafic to intermediate volcanic rocks to the south of the fault. Quaternary basalt of the Selkirk volcanic unit covers the northern margin of the Minto pluton and the transition to the Yukon River batholith, another member of the Minto Suite (Ryan et al., 2010). The Minto Property is located near the northwestern limit of Pleistocene glaciation (Duk-Rodkin, 1996). Glacial erosion was restricted to subalpine areas, and bedrock below discontinuous till has preserved its deep oxidative weathering profile. At Minto, some deposits with copper oxide minerals are locally capped by Carmacks Group volcanic rocks, indicating that at least part of the oxidation history is Late Cretaceous or older.

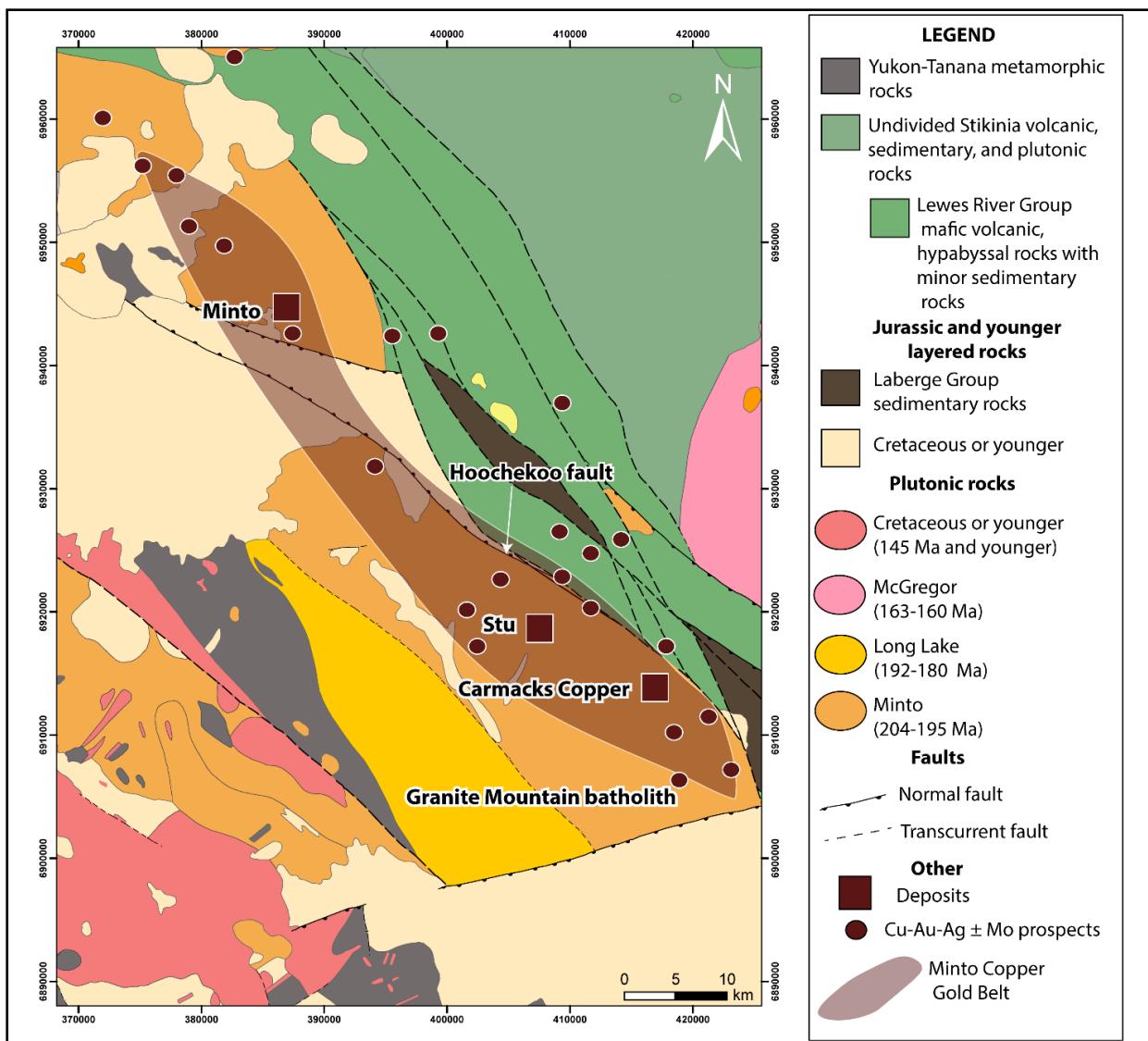

(Source: Kovacs, 2018)

Figure 7-1 Yukon Geological Terranes

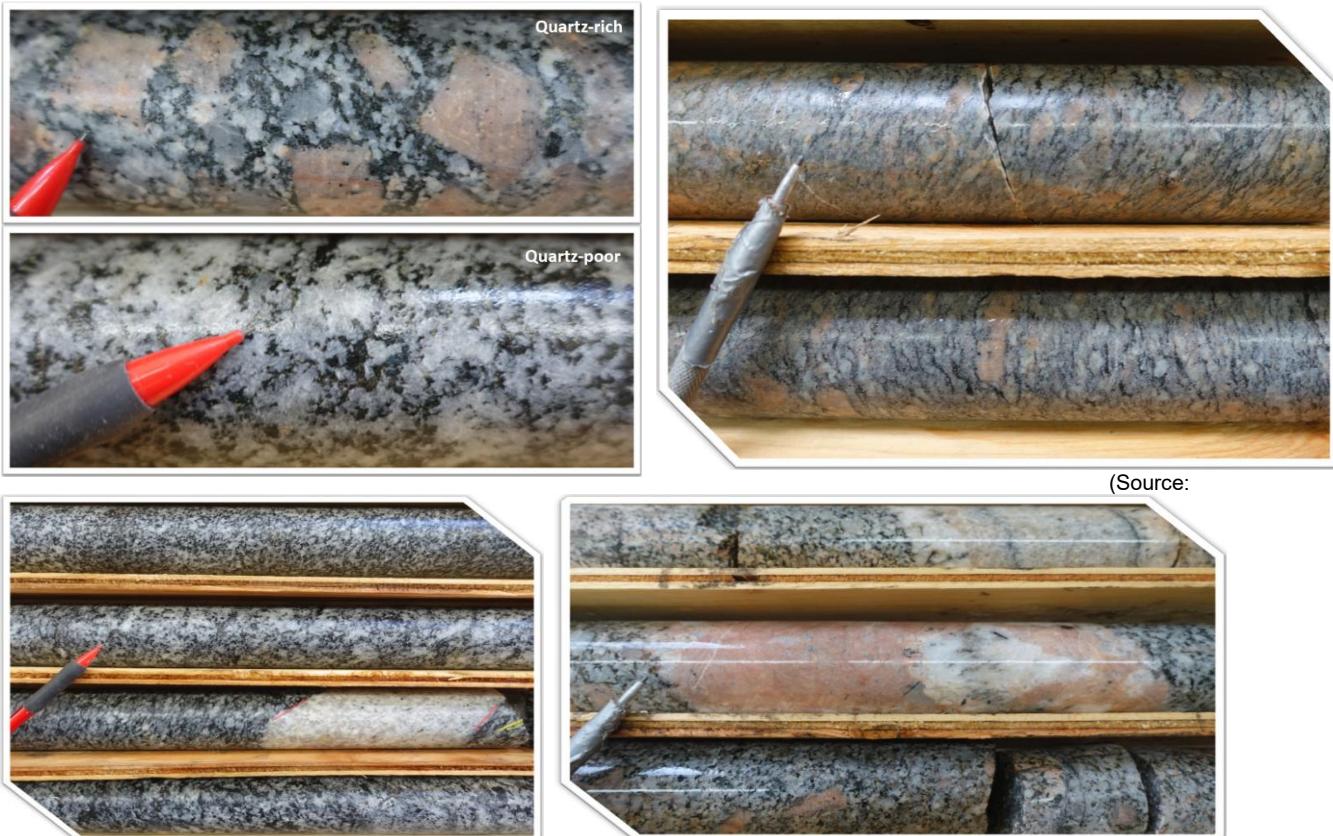
(Source: Selkirk Copper, 2025)

Figure 7-2 Regional Geology, West-central Yukon

(Source: Kovacs, 2018)

Figure 7-3 Local Geology, Minto Mine Area

7.2 Property Geology


Three distinct intrusive phases of the Minto pluton are identified on the Minto property: K-feldspar megacrystic granodiorite to quartz diorite, diorite to monzonite, and quartz granodiorite to granitic pegmatite (Tafti, 2005; Hood, 2012; Kovacs 2018, Kovacs et al., 2020). Table 7-1 shows a comparison of lithologies recognized by previous studies at the Minto project. Included in this table, is a column summarizing the Minto logging lithologies employed from 2018-2023.

The most common intrusive phase is dominantly medium to coarse grained, K-feldspar megacrystic granodiorite which is in gradational contact with subordinate quartz diorite (Figure 7-4). These rocks are mainly undeformed but locally exhibit weak tectonic foliation near their contacts with the metamorphic inliers. This unit contains approximately 30-50% plagioclase, 10-50% K-Feldspar, 20%-25% Quartz and

total biotite+/-hornblende 10% to 15%. Accessory minerals include magnetite, epidote, titanite, apatite and zircon (Hood, 2012). U-Pb geochronology by CA-ID-TIMS analysis on the intrusive rocks yielded 195.14 ± 0.25 - 0.31 Ma ages for the K-feldspar megacrystic granodiorite.

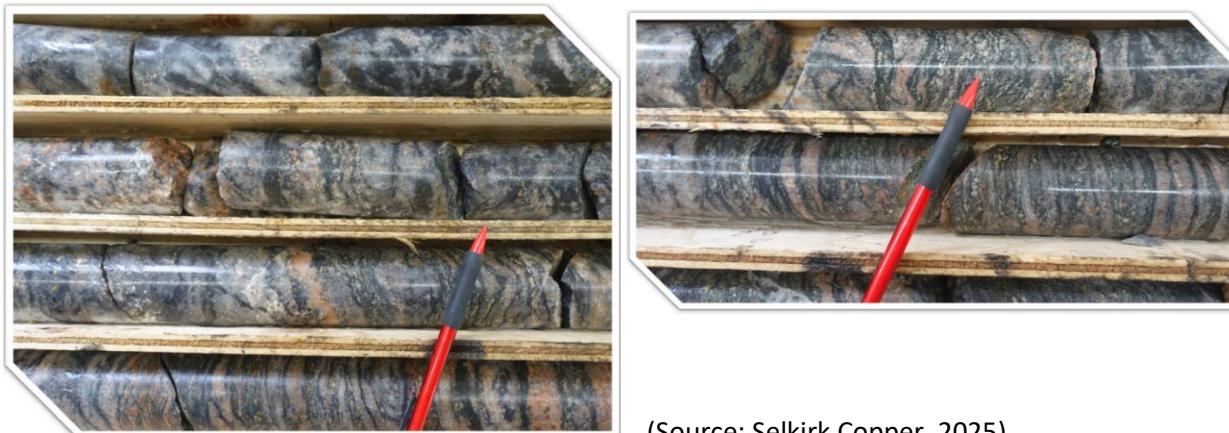
Dykes of quartz monzonite, quartz monzodiorite, granite pegmatite, and aplite crosscut the metamorphic host rocks and other massive intrusive phases (e.g., K-feldspar megacrystic granodiorite) and are variably overprinted in the metamorphic rocks by folding and boudinage (Figure XX). U-Pb geochronology by CA-ID-TIMS age dating revealed 194 Ma ages for these dykes, indicating that they are slightly younger than the massive phases of the pluton. Collectively, the geochemistry of all intrusive phases is consistent with I-type, magmatic arc affinity.

The felsic intrusive rocks are unconformably overlain by the volcanic rocks of the Upper Cretaceous Carmacks Group, which are preserved as an extensive blanket south of the Minto pluton and as isolated erosional remnants within the pluton. The Carmacks Group rocks commonly occur as conglomerate in drill core, and as hornblende-phyric andesite dykes cross-cutting the felsic intrusive rocks.

(Source: Selkirk Copper, 2025, Internal company photos)

Figure 7-4 K-feldspar megacrystic Granodiorite with subordinate Quartz Diorite

Table 7-1: Comparison of Logging Details


Minto Logging	Kovacs (2018)	Hood (2012)	Tafti (2005)	Pearson (1976)	Bostock (1936)
K-Feldspar Granodiorite (KFG)	K-feldspar +/- quartz-phyric granodiorite (LTrEJM2A)	K-feldspar Granodiorite (KGd)	Granodiorite (granodiorite, syenite, tonalite)	Klotassin Granodiorite (granodiorite, diorite, qz-monzdiorite)	Granodiorite
	Quartz-Plagioclase-biotite schist		Quartzofeldspathic gneiss	Quartzofeldspathic gneiss (Kfs- or Qz-rich)	Granite/diorite gneiss
Migmatite (MIG)	Migmatite		Biotite-rich gneiss	Biotite-rich gneiss Siliceous ore	
Assimilation Zone				Foliated Biotite Granodiorite	
Amphibolite	Amphibolite			Biotite-quartz-feldspar gneiss	
Diorite (DIOR)	Diorite (LTrEJM1)	Hornblende-biotite diorite (KGd sub-unit)	Diorite (quartz diorite, quartz monzdiorite,	Blotchy-textured hornblende biotite granodiorite	Foliated granodiorite
	Plagioclase-phyric Monzdiorite (LTrEJM1)			fine-grained foliated hornblende diorite	
Quartz Diorite (QZDIOR)	Quartz Diorite (LTrEJM2B)	Coarse Grained Tonalite (Et)		Foliated hornblende diorite	
Pegmatite Dyke (PEG)	Granite Pegmatite Dykes (LTrEJM3)	Granitoid Pegmatites	Granitic Pegmatite	Granite pegmatite	
Quartz Monzonite Dyke (MONZ)	Quartz Monzonite dikes (LTrEJM3)			K-feldspar-quartz pegmatite	
Apalite Dyke	Aplite dykes	Aplite Dykes	Foliated Grey biotite Aplite	Aplite	
				foliated to non-foliated biotite	
				Alaskite	
Andesite Dyke	Augite Gabbro	Andesite Dyke		Augite andesite	

A recent study of the Minto Copper belt, interprets the hypogene copper sulfide mineralization to be hosted within variably deformed, metamorphosed, and migmatized Late Triassic volcanic rocks of Stikinia that occur as rafts within the Late Triassic-Early Jurassic age Minto pluton (204-195 Ma) (Kovacs, 2018). This hypothesis is based largely on data from the Carmacks Copper deposit 42 km southeast of the Minto property, within the Granite Mountain Batholith of the Minto plutonic suite. The observation that the Carmack Copper deposit represents a less migmatized or less digested variant of the Minto deposit allowed for clearer identification of host rocks and structural fabrics (Kovacs, 2018; Kovacs et al., 2020). Applying this deposit model to the Minto property, host lithologies, considered partially melted expressions of the metavolcanic and metasedimentary protolith, have been reclassified using a textural framework including terms such as "Migmatite", "Diatexite", "Metatexite", and "Assimilation zone" (Figure XX).

Inliers of metamorphic rocks within the intrusive phases of the Minto pluton have been characterized as migmatite that is texturally and compositionally variable depending on the amount of partial melting that has occurred (Kovacs 2018, Kovacs et al., 2020). Textures can resemble almost gneissic texture where leucosome and melanosomes develop with ptygmatic folding, foliation parallel segregations or heterogenous or 'chaotic' texture ((Source: Selkirk Copper, 2025)

Figure 7-5). Typically, the melanosomes are strongly magnetic.

Source: Internal company photos

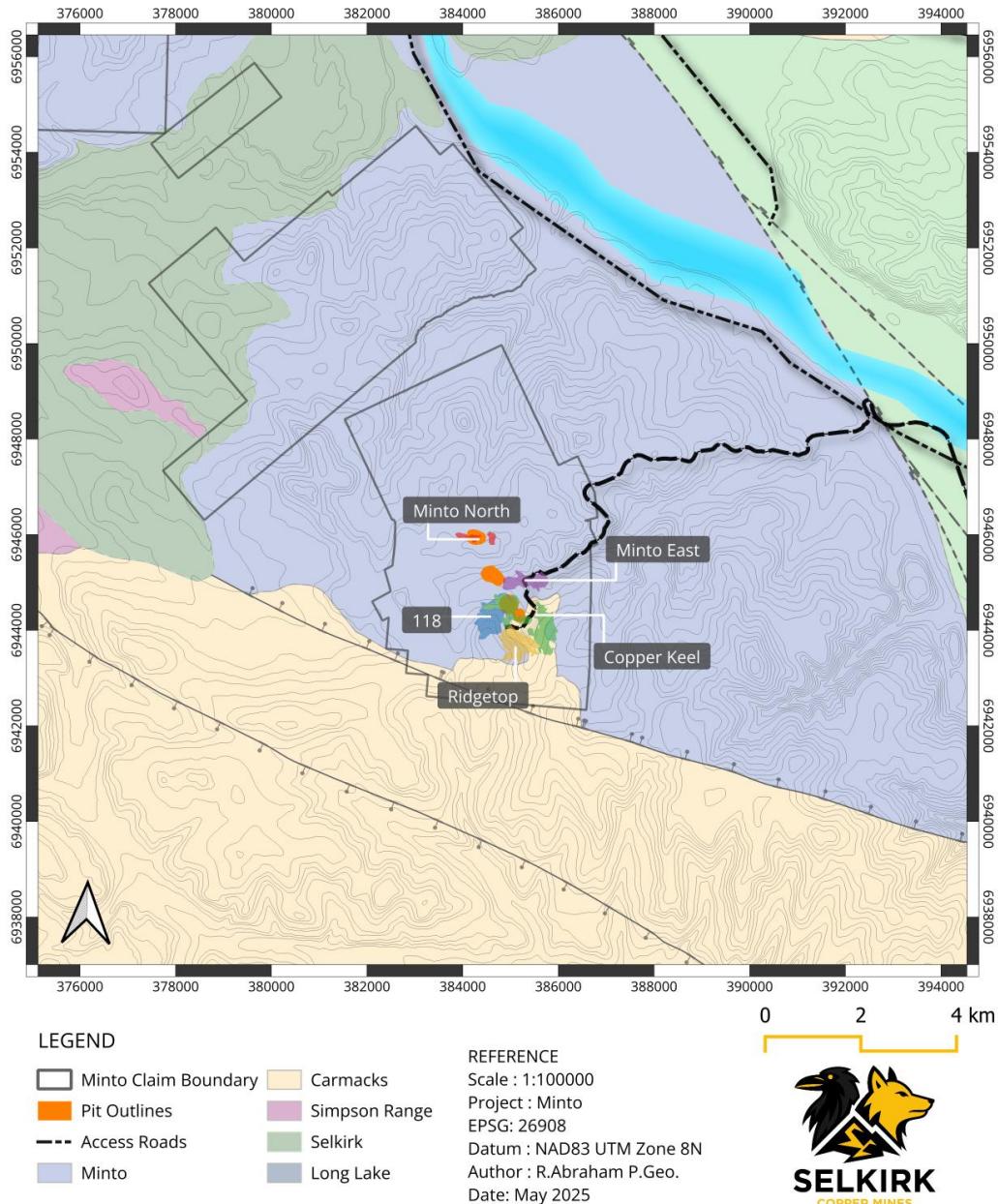

(Source: Selkirk Copper, 2025)

Figure 7-5 Partially Melted Host Lithologies

Age dating on the migmatite by complex "laser-ablation inductively coupled plasma mass spectrometer" (LA-ICP-MS) and "chemical abrasion isotope dilution-thermal ionization mass spectrometry" (CA-ID TIMS) zircon dating using U-Pb geochronology yielded a CA-TIMS weighted mean date of 217.53 ± 0.16 Ma and 217.07 ± 0.23 Ma respectively. These ages support the protolith age of the migmatite at 217.5 to 217.0 Ma, within the Late Triassic (Kovacs et. Al., 2020), indicating these rocks belong to Late Triassic metavolcanic rocks of the Povoas Formation of the Lewes River Group that outcrop 10km east of the Minto Property.

The model proposed the metavolcanic protolith of the mineralized material hosting migmatite was mineralized in the Late Triassic and subsequently underwent partial melting during the emplacement of the Late Triassic-Early Jurassic Granite Mountain batholith and the Minto pluton at ca. 205-195 Ma. The temperature and pressure regimes were $\sim 800^\circ\text{C}$ at 5.5-6.5 kbar respectively (Kovacs, 2018; Tafti, 2005). During this partial melting event the mineralized metavolcanic xenoliths/rafts were variably migmatized,

and the existing copper mineralization was remobilized as an immiscible sulfide melt. This melt crystallized into a migmatite as coarse, net-textured bornite and chalcopyrite, coeval with crystallization of the Minto plutonic suite (ca. 198 Ma from $^{187}\text{Re}/^{187}\text{Os}$ molybdenite) (Kovacs, 2018).

(Source: Selkirk Copper, 2025)

Figure 7-6 Property Geology Map, Minto/Def

7.3 Structural Setting

Regionally, two discernable deformation (D_1 and D_2) events are recorded within the Minto area. The first, D_1 , is characterized by NNW-trending and steeply dipping foliation (S_1). The S_1 fabric forms continuous foliation defined by hornblende and biotite within the quartz-plagioclase-biotite schist or defined by leucocratic and melanocratic domains in the migmatite (Kovacs, 2018). D_2 is predominantly characterized by transposition of S_1 , local development of crenulation cleavage (S_2) as well as disharmonic F_2 fold (Kovacs, 2018).

The Minto pluton comprises multiple intrusive phases, as observed by cross-cutting relationships and variations in texture and composition (Hood, 2012). Fabrics within the magmatic units form within individual intrusions and should be considered separately from the deformation textures such as foliations and gneissic banding (Hood, 2012).

Both brittle and ductile deformation occur in the vicinity of the Minto Property. Ductile deformation on a regional-scale is characterized by northwest-trending foliation defined by the alignment of biotite and hornblende grains and by the segregation of quartz and feldspar grains, locally resulting in a gneissic texture in the metamorphic rocks.

The Area 2 region shows tight to isoclinal folding with a wavelength of about 30 m (Hood et al., 2008). The folds trend roughly NW – SE, and mimic regional structural trends (Templeman-Kluit, 1984). There are local gentle folds with north-south trending axial traces. Deformation zones occur as sub-horizontal horizons and are commonly stacked in parallel to sub-parallel sequences. The orientation of foliation is highly variable within individual deformation zones and exhibits chaotic partial melting textures and ptygmatic folding in the migmatite.

Late faulting and brittle fracturing occur throughout the Minto pluton and adjacent units within the property, in some cases significantly affecting economic potential of mineralized zones. The Minto Creek (MC) fault, modelled as a steeply northeast dipping fault with a left lateral reverse displacement, roughly bisects the Minto Main deposit into north and south blocks with minimal displacement. To the north, the roughly east-west striking, north-northwest dipping DEF fault marks the northern limit of the Minto Main deposit. The sense of movement may be similar to the MC fault, with significant inferred displacement. Determining the magnitude of the displacement may be helpful in locating the extension of the Minto Main deposit along the north side of the DEF fault.

The boundary between the Area 2 and Area 118 resource sub-domains is a NW-SE striking, northeast dipping fault, showing significant displacement. In Area 118, at least two other parallel structures have been identified. In this area, the “N” zone has undergone a vertical displacement of up to 66 m. Other zones exhibit variable thicknesses and orientations, suggesting block rotation.

The Minto East fault is a northwest-trending moderately northeast-dipping structure that extends from the Minto East lens to at least the southern extent of the Copper Keel Main deposit. No major offsets have been noted so far at the Minto East fault; however, it is associated with intense alteration, strong clay and gouge development and loose rock.

Three major faults have been identified near the Copper Keel Main deposit. One is a northwest trending, steeply dipping fault which coincides with the trend of the Minto East fault and thus likely represents its

south extension. Two other major faults bisect the Copper Keel Main lens at its northern tip and form a northwest and northeast trending conjugate set. Numerous minor northwest trending, steeply dipping faults also occur as splays from major structures. These minor faults commonly parallel the lens headings and visibly offset the lens by a few metres.

Major faulting is also evident at the Minto North 2 deposit. Almost all 2020 surface drillholes intersected fault zones from 10m to 20m in thickness at variable depths. Faulting in drill core is characterized by gouge development and sandy sections with strongly hematized intervals, indicating that these structures may be water-bearing. Larger faulted intervals have poor “rock quality designation” (RQD) and show intense alteration, commonly with gypsum, clay, and carbonate veining. The western side of the Minto North 2 deposit is truncated by a major structure that appears to be north trending. The sense of displacement and the movement on the fault is currently unknown. More drilling to provide structural data is required.

Local faulting underground is characterized by hematite-chlorite-clay gouge. Fractures are commonly hematite, chlorite, clay and locally epidote coated. Extensive faulting in drill core is pervasively hematite-chlorite altered with common late cross-cutting carbonate and clay veinlets.

Faulting post-dates the main copper-gold-silver mineralizing event. However, coarse grained visible gold occurs locally along, and within, chloritic fractures, indicating a hydrothermal event may have been associated with structural remobilization of gold mineralization.

Major veins in the deposit are rare. Minor veining is comprised of thin epidote, hematite, carbonate and gypsum stringers associated with faulting or zones of intense alteration post-dating mineralization.

7.4 Alteration

The predominant alteration assemblage associated with hypogene copper mineralization, present at all Minto deposits, is a pervasive potassic alteration, characterized by elevated biotite and magnetite content within the horizontal mineralized zones. Magnetite occurs as disseminated grains within the mineralized sections. Local larger isolated grains of magnetite also occur in the felsic intrusive rocks which have no significant magnetic response.

The late, post-mineralization alteration assemblage includes replacement of mafic minerals by chlorite, sericite, and epidote in both unmineralized rocks and mineralized felsic intrusive rocks. Sericite alteration is also locally pervasive, and feldspar grains are locally hematite and epidote altered. Pervasive hematite alteration, likely of supergene origin, is common along faults, and generally occurs along fracture surfaces. Pervasive silicification tends to coincide with areas of higher-grade mineralization. Veinlets and stringers of carbonate, clay, epidote and gypsum are common and represent the latest alteration phase, as they crosscut earlier pervasive alteration settings and fault zones. Epidote veins commonly have a characteristic hematite halo.

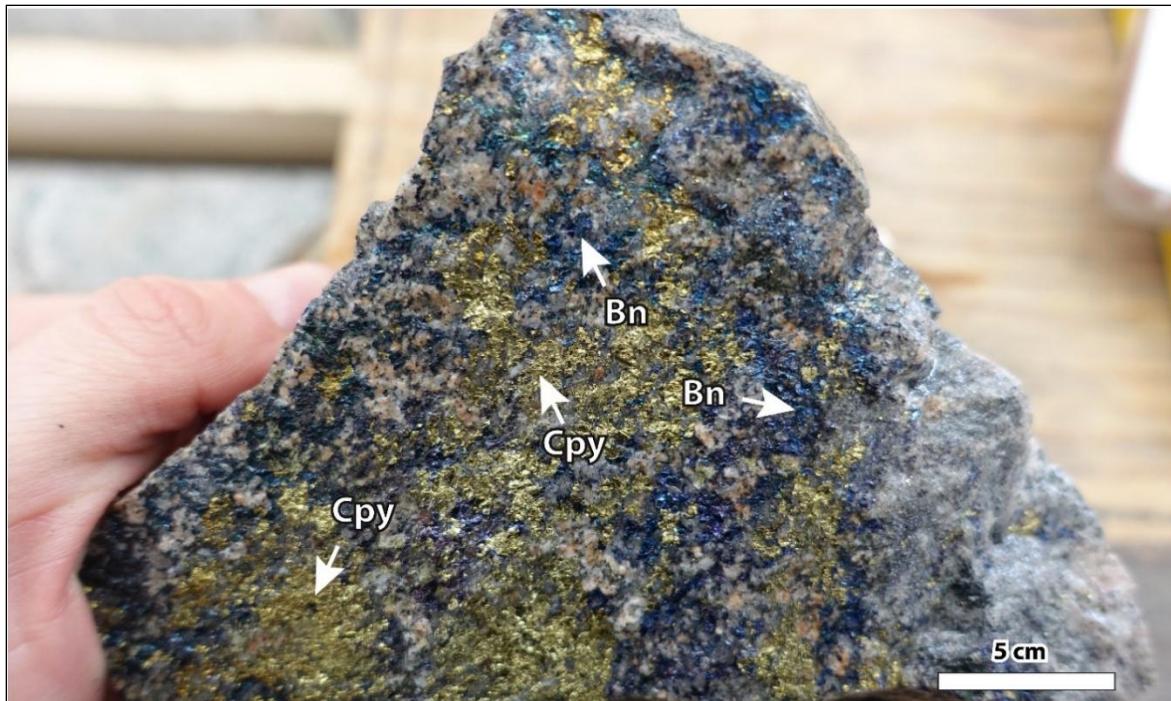
Copper oxide mineralization resulting from supergene alteration processes represents either erosional remnants of foliated horizons above the deposits, or vertical remobilization of copper along late brittle faults and fracture zones from underlying copper sulfide zones. The oxide mineral assemblage consists of malachite, minor chrysocolla, azurite and rare native copper. Oxidation is also manifested as

pervasive limonite, earthy hematite and clay alteration of feldspars. Oxidation is related directly to the depth of the water table, which is mainly less than 30 m.

7.5 Mineralization

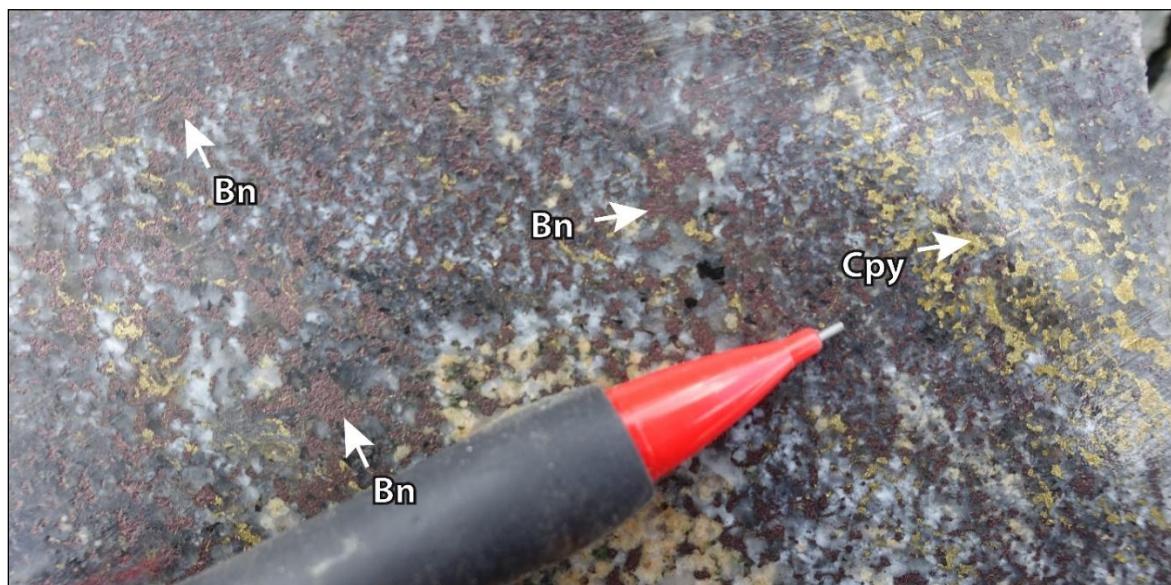
The primary hypogene minerals are chalcopyrite, bornite, chalcocite, and minor pyrite. Copper sulfide minerals occur mainly as disseminations, foliaform stringers and as net-textured copper sulfides. The intensity of copper sulfide minerals increases with ductile deformation. The highest-grade mineralization occurs as semi-massive net-textured intergrowths of bornite and chalcopyrite. Typical bornite-chalcopyrite ratios are 3:1, and net-textured bornite is especially abundant in melosome (mafic sections), where it forms higher grade (1 - 2% Cu) domains. Covellite locally occurs rimming bornite. Both bornite and chalcopyrite are commonly replaced by secondary digenite. Molybdenite locally occurs intergrown with net-textured copper sulfides.

Hessite (gold telluride), native gold, and electrum occur as inclusions in bornite, accounting for high gold recoveries in copper concentrate. Coarse free gold has also been identified in late chloritic fractures, which may be the result of secondary hydrothermal enrichment. Copper sulfide mineralization is almost always associated with elevated biotite and magnetite.


At Area 2, Area 118, Copper Keel, and Minto East deposits, mineralization occurs mainly as disseminated and foliaform grains, and the net-textured domains are generally absent. The mineralogical assemblage consists mainly of chalcopyrite-bornite-magnetite and minor pyrite.

The mineralogy of the Minto North deposit differs from the other deposits. At Minto North bornite is dominant over chalcopyrite and occurs as net-textured domains to massive lenses up to 2 m thick. Precious metal grades are elevated, and rare visible gold also occurs.

At the Minto North 2 deposit the dominant copper assemblage is chalcopyrite-bornite-chalcocite. Chalcocite commonly occurs as disseminated or local intergrowths with magnetite.


At the Ridgetop and Copper Keel South deposits, mineralization is subdivided into a near-surface horizon of supergene oxide, and a lower zone of more typical sulfide mineralization. Supergene copper oxide mineralization is characterized by malachite, chrysocolla, and local azurite. Oxidized magnetite and pyrite are also common. The mixture of oxide material with sulfides is commonly referred to as 'POX' (partially oxidized material). The lower zone is marked by an assemblage of chalcopyrite, magnetite, minor pyrite, and only minor amounts of bornite. Chalcopyrite occurs as disseminations and foliaform stringers. Magnetite is present as disseminated grains, local stringers and bands up to 0.3 m in thickness.

Copper grades increase progressively northwards from the lower grade material found at the Ridgetop towards the highest-grade material at the Minto North deposit (Mercer and Sagman, 2012). This trend is also observed on a regional scale, indicated by lower grade (chalcopyrite-dominant) mineralization of the Carmacks Copper deposit, progressively increasing northwestward in grade towards the bornite dominant higher-grade Minto deposits. This change in grade is likely caused by the increasing northward metamorphic gradient responsible for higher copper grades.

(Source: Kovacs, 2018)

Figure 7-7 Net Textured Bornite-chalcocite, Minto Main Deposit

(Source: Kovacs, 2018)

Figure 7-8 Net-textured Bornite-chalcocite in Migmatite, Minto Main Deposit

7.6 Property Geology, Other Minto Area Blocks

This section, describing the BOND, MEL (part of the HUN North) and DEL blocks, is taken from the Competent Persons Report for Pembridge Resources plc. by Schulze, 2019.

The BOND, MEL and DEL blocks were all staked to cover areas of similar geological settings to that of the Minto Mine. The DEL and BOND showings also cover previously identified copper occurrences.

7.6.1 Bond Property

The 2008 exploration program indicated that the BOND 1-70 claims are underlain almost entirely by Minto Suite biotite granite to granodioritic gneiss that is particularly hornblende-enriched in the western and central areas. The majority of the intrusive rocks are moderately foliated, with stronger foliation evident near the Yukon River in northwestern areas. Biotite enrichment, including secondary biotite, also occurs in more strongly foliated areas along the Yukon River, likely identifying structural features (Schulze, 2008).

7.6.2 Pepper-Toe-Winter Property

This property is comprised of three attached claim blocks, located northwest of the MINTO/DEF block. The Pepper block, to the northwest, is underlain mainly by a large intrusion of Late Triassic to Early Jurassic Minto Suite granodiorite. Extreme southwestern areas cover Late Cretaceous to Early Tertiary Carmacks Group basalts. The southeast corner, contiguous with the Toe block, covers a small unit of Late Tertiary to Quaternary Selkirk Group basalts.

The Toe block is underlain mainly by the same Minto Suite block as Pepper claims. Western areas cover the same Carmacks Group volcanic assemblage as the Pepper block. The Winter block is almost completely underlain by young Selkirk Group basalts.

7.6.3 MEL / Hun North Property

The Hun North property, which includes the remaining MEL claims, is underlain by hornblende granodiorite, probably part of the Minto plutonic suite. Western areas are underlain by Tertiary to Quaternary basalts. The property has a similar regional airborne Total Magnetic Intensity (TMI) signature to the Minto mine area. The felsic intrusions of the MEL property consist of medium to coarse grained biotite granite, which are potassic feldspar-porphyritic to megacrystic in northwestern areas. Some exposures of granodiorite are foliated, with narrow, centimetre-scale biotitic zones, particularly in northwestern property areas.

7.6.4 Hun South Property

The Hun South property, which underwent grid soil sampling in four grids or “zones”, covers the northern extension of a large batholith of Minto Group granodiorite, also called the Granite Mountain batholith. Extreme northern areas cover Late Cretaceous Carmacks Group basalts. The Minto Group intrusion is bounded along its northeast side by a district-scale normal fault, with down-dropping occurring along the northeast side. Total Magnetic Imagery (TMI) and 1st Vertical Derivative maps indicate that stratigraphy is oriented in a WNW direction (Section **Error! Reference source not found.**).

7.6.5 DEL Property

The present DEL property was staked partly on the basis of a strong TMI “high” signature, similar to that of the actual Minto mine site. Based on the data of the Yukon Geological Survey (YGS), the property is underlain by a northwest-southeast trending assemblage of Lewes River Group, Povoas Formation andesitic to basaltic flows, tuffs and local tuff breccia. The western boundary of this assemblage is in a strike-slip fault contact with the northwestern portion of the Granite Mountain Batholith. Mapping in

2008 revealed that the majority of the property is underlain by mafic to intermediate volcanic rocks, with a small region in the southwestern property area underlain by Minto Suite biotite granite with minor calc-silicate alteration. The southeastern area of the property, paralleling the Yukon River is also underlain by Minto Suite granodioritic rocks (Schulze, 2008).

7.6.6 WS Property

The WS property is wholly underlain by Minto Group rocks marking the southern extent of the Granite Mountain batholith. East of the property, the batholith lies in dextral transpressional fault contact with Upper Triassic Lewes River Group augites and feldspar phryic andesites (website, Yukon Geological Survey). The Lewes River Group assemblage represents the northwestern portion of the Whitehorse Trough, part of Stikinia. Directly south of the WS block, the Granite Mountain batholith is terminated by an east-west trending normal fault, with the down-dropped side to the south, and separating the batholith from Carmacks Group volcanic rocks to the south.

8.0 Deposit Types

This section was provided from a 2018 M.Sc. thesis titled “Genesis and Post-ore Modification of the Migmatized Carmacks Copper Cu-Au-Ag Porphyry Deposit, Yukon, Canada” and a paper written by Kovacs et.al., 2020, titled “Carmacks Copper Cu-Au-Ag Deposit: Mineralization and Post-ore Migmatization of a Stikine Arc Porphyry Copper System in Yukon, Canada”.

Since discovery of the Carmacks Copper and Minto deposits in the 1970s, several models have been proposed for their genesis, including (1) copper mineralization in digested Triassic volcanic rocks (A. Archer, pers. comm., in Sinclair, 1977), (2) metamorphosed red-bed copper (Kirkham, 1974), (3) deformed and metamorphosed porphyry copper-gold (Pearson and Clark, 1979; Tafti, 2005), (4) iron-oxide copper gold (IOCG; Mercer and Sagman, 2012), and (5) a shear-hosted hydrothermal system generated in the ductile root zones of a porphyry system (Hood, 2012).

The most current geologic and geochronologic constraints require that mineralization was an inherited feature of a Late Triassic protolith, which was subsequently metamorphosed in the latest Triassic and texturally modified during subsequent magmatism in the Early Jurassic. For this reason, a syn-metamorphic or syn-intrusion model for mineralized material formation is unsupported. Furthermore, deep emplacement of the Minto pluton cannot be used as a proxy for the emplacement depth of mineralization at the Minto mine, as the emplacement of the Minto pluton postdates mineralization by >10 Ma. Similarly, the oxidation state of the pluton and the widespread presence of alteration hematite (Tafti, 2005; Hood et al., 2008) is irrelevant to the deposit that formed >10 Ma prior to the emplacement of the pluton. Lastly, the structurally controlled distribution of mineralized material is also not a demonstrably primary feature of either of the deposits, as material was melted and remobilized during the emplacement of the Minto pluton. In addition, the intensity and extent of alteration that is common in IOCG deposits is not well-developed at Minto and mineralized zones are not breccia hosted. As such the IOCG deposit model is not considered viable for the Minto deposit.

The recognition that the least deformed and migmatized host rocks at the Carmacks Copper deposit contain low-grade, disseminated Cu as a chalcopyrite-pyrite assemblage hosted in biotite-bearing and K-enriched host rocks is consistent with a porphyry copper deposit model. Hypogene grades from ~0.2 to 1% Cu and ~0.1 to 1 g/t Au at the Carmacks Copper, Minto, and Stu systems are within the range of typical porphyry copper grades globally (e.g., Kesler et al., 1992). The caveat to this is that post processes may have affected grade. Copper to gold ratios of 23,000 to 34,000 are also typical of gold-bearing porphyry copper deposits. Although no intrusive phases related to the pre-metamorphic hydrothermal system are recognized at Carmacks Copper, it is permissible that the population of 217.53 ± 0.16 Ma igneous zircons represent magmatic activity temporally and genetically related to $>212.5 \pm 1.0$ Ma copper mineralization.

Hydrothermal features such as veins, alteration halos, or hydrothermal breccias are not recognized through the overprinting effects of metamorphism, penetrative deformation, and partial melting. However, the general lack of quartz rich domains within metamorphic rocks suggests that quartz-sulfide veins were likely absent from the protolith. It is therefore likely that protolith mineralization was introduced as disseminations or as sulfide dominant veinlets in conjunction with widespread biotite - magnetite alteration. Together, these observations suggest that the Carmacks Copper and Minto deposits each preserve the high temperature potassic core of a porphyry copper system. Several features listed above are also consistent with alkalic porphyry affinity:

- Low abundance of pyrite;
- Association with alkaline intrusions;
- Low volume or absence of hydrothermal quartz; and
- Cu-Au metal tenor (compared to Cu-Au - Mo in calc alkalic porphyry systems).

The interpretation of the Carmacks Copper and Minto deposits as metamorphosed porphyry copper systems is further supported by their temporal and lithotectonic affinity with porphyry belts in British Columbia. First, correlation of metavolcanic host rocks at Carmacks Copper with Stikinia arc equivalents in Yukon (Kovacs, 2018) supports a similar tectonic and geodynamic setting to porphyry systems in British Columbia. Second, the ~217 to 213 Ma age of mineralization at Carmacks Copper constrains the system to within the prolific 227 to 178 Ma epoch of porphyry Cu mineralization in the Stikinia and Quesnellia arcs of British Columbia, and broadly coincident with peak productivity in Stikinia (e.g., Schaft Creek ~222 Ma, Galore Creek ~210–205 Ma, Red Chris ~204 Ma; Logan and Mihalynuk, 2014, and references therein).

9.0 Exploration

There has been no exploration activity done by the Issuer.

10.0 Drilling

There has been no drilling activity done by the Issuer.

11.0 Sample Preparation, Analyses and Security

The sample preparation, security and analytical procedures used by Minto for the Minto Mine have ensured the validity and integrity of samples taken. The procedures and results are described below and come directly from current Minto personnel and previous reports as referenced.

Minto reviews control samples when results are received from the laboratories. MMTS has reviewed all QA/QC data from the years 2005 through 2022, as provided by Minto. There is no available QA/QC for holes drilled between 1971 and 2001. Therefore, these samples were validated through statistical comparisons. See Section **Error! Reference source not found.** of this report for a summary of corrections made to both historic and recent data.

11.1 Sampling Protocols and Principal Laboratories

11.1.1 Sampling, Security and Assaying Minto 2021-2022

Some 20,800 drill core samples including QA/QC were taken in 2021-2022. Sampling and sample security in 2021-2022 matched the procedures described under 11.1.2, with the adjustment that approx. 17,800 samples were transported to and analyzed by Bureau Veritas (BV) in Burnaby, BC, instead of SGS or ALS as in prior years, while approx. 3,000 samples were kept in-house entirely and were prepped and analyzed at the on-site laboratory next to the Minto mill (Cu and Ag only).

MMTS notes that for the samples that were sent to Bureau Veritas, field duplicates were not collected and insertion of coarse reject and pulp duplicate samples only commenced with drill hole 21EXP009, possibly an oversight by the geological team.

For the samples analyzed on-site at Minto, no duplicate data other than the lab-internal data is available and the blind BLK and CRM insertion rate is substantially lower compared to the BV dataset. From drill hole 22-UDA2-0220 onwards, neither blind BLK nor blind CRM was inserted which left 1,116 core samples from 22 drill holes with lab-internal control only.

MMTS is not aware of any check-assay results for 2021 or 2022 samples.

11.1.1.1 Bureau Veritas

Bureau Veritas is an ISO/IEC 17025: 2017 accredited laboratory that provides a wide range of analytical services and uses a detailed and comprehensive quality system to minimize errors and maximize the reliability of our analytical results. Reference materials, replicates and blanks are inserted into randomly assigned positions within each rack as generated by BV's proprietary LIMS system so that they are analyzed with the client solutions to provide a final verification of the entire sample handling process.

The following analysis methods were requested from BV:

PRP70-250: Received samples are entered into the Laboratory Information Management System (LIMS), weighed, dried and crushed to ensure that greater than 70% pass a 2mm sieve. A 250g split (riffle splitter) of the crushed material is then pulverized to greater than 85% passing a 75 μ m sieve.

At random intervals and at the start of each shift QC testing is completed on both crushed and pulverized material to ensure that the above specifications are met.

FA-430: 30g of prepared sample is custom-blended with fire-assay fluxes, PbO litharge and a silver inquart. Firing the charge at 1050°C liberates Ag, Au and PGEs that report to the molten Pb-metal phase. After cooling the Pb button is recovered, placed in a cupel and fired at 950°C to render a Ag, Au and PGEs dore bead. The bead is then digested with nitric and hydrochloric acids for instrumentation determination (AAS). The detection window is 0.005 to 10g/t. FA-530 is used for samples exceeding 10g/t in FA-430, which requires the same preparation and processing of 30g material, but the finish is gravimetric with a lower detection limit of 0.9g/t.

AQ-300x: 0.5g of the prepared sample are digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO₃ and DI H₂O for one hour in a heating block or hot water bath. Sample is made up to volume with dilute HCl. Analytical finish is via a combination of ICP-ES. In addition, Minto requested a high-grade Cu analysis (AQ-370 on a 1g split) for all samples until March 2022 and only for the samples exceeding 10,000ppm Cu in AQ-300 after that date. Samples reporting >10% Cu were further analyzed by Cu titration (GC820) which has a detection limit of 1%.

11.1.1.2 Minto on-site laboratory

As an active mine site lab, Minto personnel would adhere to several standard operating procedures (SOP) regarding sample preparation, weighting and digestion of sample material, reference standards preparation for calibration and atomic absorption flame setup and operation, among others. These SOPs have been made available to MMTS, and a brief review of the documents indicates that the procedures are sufficiently comprehensive to emulate a commercial lab and suitable to be applied for exploration or definition drilling samples.

Drill core samples are dried 2-3h at approx. 230° F, then sent through a jaw crusher that gets cleaned by compressed air between samples. The crushed sample is then further reduced in size by a riffle splitter until a representative 150-200g split is achieved. The split gets transferred into a pulverizer pot to reduce grain size to 85% passing 200mesh which takes about 1 minute. The duration is based on a weekly screening validation.

A total 1-2g of powder is digested in 30mL of concentrated hydrochloric acid and 10mL of concentrated nitric acid on a hot plate operating at 250-300° C for 30min. The solution is then allowed to cool to room temperature, diluted with water and thoroughly mixed. After settling of residue, the analyte is run through an atomic absorption spectrometer. The lower reporting limit is 0.01% Cu and 1ppm Ag, with Ag analysis performed only when Cu grade exceeds 0.1%.

MMTS was provided with the 2016 Minto on-site assay lab QA/QC procedures and protocols which would have been applicable for any prep and assay work completed on drill core in 2021-2022. The following sections are copied from said document.

Introduction

The Quality Assurance and Quality Control (QA/QC) procedures and protocols implemented by the Assay Lab are designed with the best intent to ensure that the data collected and created is of a high level of quality and comply with CIM Standards and Guidelines.

As part of its QA/QC program the Assay Lab monitors data precision, accuracy and contamination using Standard Reference Materials, Blanks, Duplicates and procedures to limit negative effects during sample preparation and analysis.

Standard Reference Materials

Purpose: Certified Reference Materials (CRM's) are inserted to measure the analytical precision and accuracy of laboratory analyses. CRMs are unaffected by sample preparation procedures and are meant only to test the analytical equipment and procedures that are used in the Assay Lab.

Protocol: The Assay Lab will insert CRM's that are sourced from Natural Resources Canada (CCRMP) and CDN Resource Laboratories Ltd. for every set of digestions. The Assay Lab will use 3 different CRM's (low grade, medium grade and high grade) to represent the grade ranges found in the mine site and mill.

Tracking of the assay results of the CRM's will be done and compared with the Certificate of Analysis supplied from CCRMP and CDN Resource Laboratories Ltd. Results that exceed 2 Standard Deviations (SD) will be assigned a warning, results that exceed 3 SD will be deemed to have failed. Assays that contain the failed CRM's will be re-assayed.

Procedure: The CRM's will be inserted into the digestion run, according to the element desired, and analyzed using the same procedure as the other samples.

Table 11-1: Summary of Standards

Standards		Expected Value	Upper limit	Lower limit
CRM	CU 195 Copper	0.794	0.859	0.729
	CU 195 Silver	14.1	16.0	12.2
	CCU-1d Copper	23.93	24.80	23.06
	CCU-1d Silver	120.7	127.3	114.1
	PTC-1b Copper	7.97	8.24	7.70
	PTC-1b Silver	53.1	57.9	48.3
Certified In-House	SRM-1 Copper	1.135	1.255	1.015
	SRM-1 Silver	3.9	4.2	3.6
	Minto Con. Copper	37.50	39.99	35.01
	Minto Con. Silver	128.5	141.4	115.6
	Cyc O-F Copper	0.06	0.07	0.05

Blanks

Purpose: Blank samples are inserted to measure the level of contamination that may occur during the sample preparation procedure.

Protocol: The Assay Lab will insert 2 blank samples, labelled Prep Blank Low and Prep Blank High, along with the Daily Mill Run. The Assay Lab will insert 1 crusher blank sample with each Geology set of samples when the crusher is used, and 1 prep blank sample with each Geology and Met set of samples when the pulverizer is used. The Assay Lab will use silica sand for the pulverizer blank samples and clean rock for the crusher blank samples.

Samples that display a high level of contamination will be deemed to have failed and will need to be re-assayed.

Procedure: After crushing, the bucker will prepare a blank for each set of Geology samples. The bag will be labelled as Crusher Blank. After pulverizing the bucker will prepare a blank for each set of Mill Run, Geology and Met samples. The bag will be labelled as Prep Blank.

Upon receipt at the lab the Blank samples will be prepared and analyzed in sequence using the same analytical procedures as the other samples being submitted.

Duplicate Pulp Analysis

Purpose: Duplicate pulp analyses are conducted to measure the level of sample bias that may occur during the sample preparation procedure. Broadly it is a measure of the overall homogeneity of the crushed sample.

Protocol: Duplicate pulp analysis will be conducted for every set of samples that are submitted to the Assay Lab. Upon completion of the analysis, the Assay Lab will compare the two results. Results with a variation that exceeds 100% will be flagged. The entire set of samples will be flagged, re-mixed, and re-assayed.

Procedure: During laboratory sample weighing, the Assayer will pick one of the samples as a duplicate. The duplicate sample will be analyzed using the identical method of analysis.

External Lab Checks

Purpose: To evaluate the level of precision, accuracy and analytical errors that may be present at the Assay Lab.

Protocol: The Assay Lab will submit sub-samples to a certified outside laboratory for analysis utilizing the same or very similar procedures. The results of each analysis will be compared and where discrepancies about 50% are noted within a batch of assays, the batch will be flagged as having produced irregular results.

Procedure: The Assay Lab will produce weekly/monthly sub-samples of the Cyclone O/F, Final Tails, Filtered Con, and Trucks. One of the sub-samples will be analyzed in the Assay Lab. The second sub-sample will be shipped to the outside laboratory.

Crusher and Pulverizer Screen Analysis

Purpose: To evaluate the crusher and pulp homogeneity, that may be occurring during the crushing and pulverizing stages of sample preparation.

Protocol: The Assay Lab will run a granulometry test on the crusher twice per week. The results of the test should be 80% passing 10 mesh (2mm). If the results are less than 80% passing the jaw space is decreased, if the results are more than 80% passing the jaw space is increased. The Assay Lab will run a pulverizer granulometry test twice per week. The results of the test should be 90% passing 200 mesh (75 micron). If the results are more than 90% passing, the pulverizing time is decreased, if the results are less than 90% passing, the pulverizing time is increased.

Procedure: For the crusher granulometry test, approximately 1000g of clean rock will be crushed and then screened. The amount retained on the 10 mesh screen is then weighed. For the pulverizer

granulometry test, approximately 150 g of sample is pulverized and then screened. The amount retained on the 200 mesh screen is then weighed.

Pulverizer Pot Weights

Purpose: To evaluate the wearing of the bowl, rings and pucks. Excessive wear on the pot parts leads to irregular pulverizing.

Protocol: The Assay Lab will weigh the bowl, lid, rings and puck on a weekly basis. If the wear of the bowl reaches 30%, that part will be replaced with a new part.

Procedure: Each part of the pulverizing pot (lid, bowl, large ring, small ring, and puck) will be weighed. The weights will be recorded on the appropriate sheet. When the weight of a part gets to 70% of the original weight, it will be replaced with a new part.

Reporting Results

Each assay result should be checked on the final report by the Assay Lab supervisor prior to distribution. The results must be checked for integrity and accuracy prior to release from the lab. If any assay result looks unusual, the sample will be either re-assayed or direction will be requested from the owner of the sample (i.e. Mill Ops, Metallurgy, or Geology).

Training

Purpose: To ensure that all Assay Lab personnel are knowledgeable of the QAQC procedures and protocols.

Protocol: All Assay Lab personnel involved in the sample process are required to be knowledgeable about QAQC procedures and protocols related to their area of responsibility.

Procedure: The Assay Lab will require that all employees involved in sample processing will have read and understood the Standard Operating Procedures (SOP's).

11.1.2 Sampling, Security and Assaying Minto 2019-2020

This information has been provided by current Minto personnel and reviewed by MMTS and found to meet current industry standards.

All core drilled in 2019-2020 are NQ core. The cut line on the core is marked by the core logger. The core is cut into halves with a diamond saw, with the 'A' side going to the external lab for analysis and the 'B' side retained in the core box. Samples are taken from 1 m intervals with shoulder samples extending 2 m past mineralized zones.

Computer generated bar code tags are provided by the assay lab. These tags are attached to the core box by the core logging geologist at the start of each sample. During cutting, the main part of the tag remains attached to the core box whereas the other 3 bar code tags go into the sample bags with the core. The bags are also marked by hand with a felt maker. The assay lab keeps one tag with each of the sample streams: coarse rejects, fine rejects, and processed sample.

Prior to core cutting and sample shipment, the drill core is prepared for photography. All individual core boxes are cleaned and then photographed with the meter marks and sample tags clearly indicated using a digital camera. Once the photography is completed, the core loggers upload the photos to Minto's server and rename all photos with the drill hole ID and the from-to meterage of the actual core box. These renamed photos are then put into a separate drill hole ID folder on the server.

When core cutting is completed, the drill core is stacked in order by hole ID and then pelletized for storage. The top box of the pellets is sealed with a core lid. The pelletized core boxes are transported to Minto's core yard. Hole IDs are painted on the pelletized boxes.

All sealed sample bags are packaged into rice bags, which are also sealed with a zip-tie and identified by a sample shipment tag. An additional sample shipment tracking sheet is also placed into the rice bags for tracking. The sample shipment batch identifications are sent to the receiving lab with the total number of samples and sample sequences and once the shipment arrives confirmed by the lab. The rice bags are brought down to Minto's Warehouse, where they are weighed and shipped down to Whitehorse. Samples are usually shipped offsite in batches of 30 to 40 samples to the primary laboratory.

QA/QC sample insertion includes Standards, Blanks, Pulp Duplicates, Coarse Duplicates and Field Duplicates, one of which is inserted every 10th sample by the Core Logging Geologist. Additional blanks are also inserted before and after high-grade mineralized intervals. All QA/QC samples are not identified and considered blind to the laboratory.

QA/QC samples are logged into Minto's MaxGeo Logchief drill core logging software with sample ID and depth. Received assay results are uploaded into Minto's Dashed database, matching sample numbers. Sample results are monitored and reported by the QAQC software package by MaxGeo. The lab is notified of failed samples, and re-analyses are requested. Upon receipt of re-assays, new results are uploaded and ranked with precedence above the first certificate for export.

As of August 5, 2020, the primary assay laboratory is SGS Canada in Burnaby, BC. SGS in Burnaby is an accredited laboratory by the Standards Council of Canada found to meet standard ISO/IEC 17025:2017. Samples are prepared at the SGS Whitehorse laboratory. Copper assays are done by Aqua Regia digestions with ICP-AES finish, and ICP-MS finish for samples exceeding 10,000 ppm. Gold assays are by Fire Assay with AA finish for 30 g samples. Silver is assayed with 4-acid digestion with AAS and Aqua Regia with ICP-AES finish.

Prior to August 2020 the ALS laboratory in Whitehorse, YT, served as the preparation laboratory responsible for crushing, splitting and pulverizing. The samples were then shipped to the ALS laboratory in Vancouver, BC for analysis. ALS in Vancouver is a laboratory accredited by the Standards Council of Canada found to meet standard ISO/IEC 17025:2005. At ALS, copper and silver assays are by Aqua Regia digestions with ICP-AES finish, gold assays are 30 g samples by Fire Assay with AA finish.

The change in laboratories occurred after a systemic issue of blank contamination, which appeared as multiple blank assays for copper exceeding 500 ppm.

Over 1,200 core and QA/QC samples from drill holes between 20UG045 and 20UG136 were analyzed at the Minto on-site laboratory. See 11.1.1.2 for procedural details.

11.1.3 Sampling, Security and Assaying Minto 2016-2018

This information is based on Minto's 2014 internal report prepared by Minto's technical team. Per Minto personnel, the same procedures outlined in this report were followed during 2016-2018.

The geologists determine the positioning of samples at the time of logging. For sample markings and cutting lines a red china marker is used. The start and end of the sampling interval and the sample number is written on the core. Using a straight edge mark a saw line on the core a cutting line is established by straightening the core in the proper orientation in the box before drawing the line. While cutting, half of the core samples go into sample bags and the other half stays in the box. The geologist provides the core cutters a sheet listing all the sample details for each hole, including the "from-to" intervals and type of control sample (e.g., duplicates, standards and blanks).

After the meter marks, geotechnical logging, geological logging, and sample marking have been completed, the core is photographed using a digital camera. Photographs are uploaded to Minto's server.

Optimum sample size is determined to be 1.5 m for all foliated granodiorite units (with or without visible sulfides) along with successive 1 m and 1.5 m shoulder samples at the upper and lower contacts. Sampling fully encompasses the mineralized zone. Sample lengths up to 3.0 m are allowed in waste rock, with a minimum sample size of 0.3 m. Lithological contacts should always be respected. When visible gold (VG) is observed, the sample is assayed using the SCREEN METALLIC method.

A blank, a standard, and one of either a pulp duplicate or coarse reject duplicate is inserted at least once every 20 samples. Thus, there are 3 control samples and 17 core samples out of every 20 samples submitted to the lab.

For standards and blanks, the sample tags are labeled in the stub remaining in the sample book and on the tag stapled to the core box and photographed. For pulp and coarse reject duplicates, the sample tags are labeled in 3 spots including the stub remaining in the sample book, the tag stapled to the core box and photographed, and the tag placed into the sample bag.

The geologist logging the hole is responsible for marking the blanks and standards, including labeling the sample bags and storing these samples where they can easily be added to the sample lineup for shipment.

The core cutter is responsible for writing bags for all the other samples and taking care of the duplicate samples. For duplicate samples, the first tag and the duplicate tag (marked P or C) goes into the same sample bag. The bag is then labeled with both sample numbers.

For Blanks, a sample of 30-50 cm pre-cut unmineralized granodiorite is used. It is intended to look like a "regular old core" sample. Blanks are inserted after strongly mineralized samples.

For Duplicates, two types of duplicate samples are used to test the accuracy of the lab at two different stages. Both course and pulp duplicates are selected by the geologist and marked on the sample tags. The coarse reject duplicate is taken after the initial processing steps at the lab, after the first split. The

pulp duplicate is taken after the final stage of the sample processing. It tests the homogeneity of the sample material and reproducibility of the result.

For Standards, a 100 g sample of certified reference material is used. Premade standards are stored in Kraft bags and are selected by the geologist. The standard that most closely matches the estimated grade of the interval is selected.

A Sample Submittal Form is filled out including date and methods required. One copy is placed in a plastic bag and inserted in Bag #1 of the shipment. The digital file is placed on the portable hard drive, which is given to the Project Manager. The project manager e-mails the file to the Minto Warehouse and to the data managers. Each bag is marked with the shipping and receiving address, plus the shipment name and bag number. Each shipment includes only samples from a single hole. Shipments are made up in approximately 20 bags lots to keep the load appropriate for the expeditor. The person preparing the sample shipment ensures all samples, including standards and blanks, are packed. The geologist provides a sheet listing all the sample details for each hole, including the “from-to” intervals and type of control sample (e.g., duplicates, standards and blanks). When the bags are loaded onto the truck, the person responsible ensures that the bags match the total number of bags listed in the submittal form. Shipments are transported to Whitehorse via Small’s Expediting Services to ALX Chemex Whitehorse for sample preparation.

11.1.4 Sampling, Security and Assaying MintoEx 2012-2015

This information is based on reporting by Heberlein, 2015 and has not been independently verified by MMTS.

Drill core from exploration and delineation drill holes is sent to ALS in Whitehorse, YT for sample preparation and ALS Vancouver, BC for analysis. NQ diameter cores are photographed, logged and cut at the on-site core shack. Core samples from 0.5 to 2 m in length are sawn into equal halves and one half is bagged and dispatched to the laboratory leaving the second half in the core box as a permanent record.

Both blanks and CRMs are inserted into the sample stream at a frequency of one in 20 samples. Field duplicate sampling using the second half of the core was introduced in early 2015. Field blank material used is an unmineralized drill core.

11.1.5 Sampling, Security and Assaying 2011

This section is based on reporting by Minto Explorations, 2012. MMTS has not independently verified the information.

11.1.5.1 MintoEx 2011

The core was transported from the drill rig to the logging facility by the drilling contractor, where MintoEx personnel logged it for geological, sampling, and geotechnical purposes. Geological data including lithology, structure, alteration, and mineralization was recorded for all drill holes. All drill cores were photographed for easy reference when constructing geological models for resource estimation.

Sample intervals were marked on the core and a cut line was drawn with a china marker for the diamond saw cutter to follow. Half of the core was placed in a sample bag and the other half was returned to the core box. Sample intervals were nominally taken at 1.5 m in the mineralized zones, with

a minimum of 2 shoulder samples taken into waste contact. Waste material between successively stacked mineralized zones was sampled at 3 m intervals to avoid gaps in assay data.

The 2011 drill core samples, blanks and SRMs were analyzed at the Chemex laboratory for copper and gold analysis in North Vancouver. The pulp and coarse reject duplicates were returned to the MintoEx office in Vancouver, where they were transferred to fresh Kraft paper bags, assigned new sample numbers and resubmitted to Chemex as “blind duplicates”.

The samples submitted to Chemex were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm) with a 250 g subsample split and pulverized to better than 85% passing -75 μm . Copper was determined by aqua regia digestion method with final copper determination by ICP-ES (ME-ICP41). Until May 3, 2011, a screen metallic copper method was used on any samples where native copper was logged. This practice was discontinued when comparison of the two methods showed no appreciable difference in results.

Gold was determined using a fire assay procedure on a 30 g sub-sample with atomic absorption spectroscopy finish. Silver was analyzed using aqua regia digestion and AAS finish.

11.1.6 Sampling, Security and Assaying 1971 – 2010

This section is based on reporting by SRK, 2008, and SRK 2011, MMTS has not independently verified the information.

11.1.6.1 MintoEx 2010

The mineralized intervals in core were sampled in lengths ranging from 0.22 m to 3.90 m and averaging 1.41 m with a median of 1.5 m from 18,739 sawn core samples. Sampling intervals were typically 1.5 m to 2.0 m in mineralized material and 3 m in longer waste intervals between mineralized zones. Drill core assay samples were collected from all foliated granodiorite horizons and, typically, sampling extended into the surrounding massive, un-foliated and unmineralized rock for at least 3.0 m. Individual samples do not cross the geological boundary between foliated and un-foliated rock which is generally a sharp contact. The sampling methodology is appropriate for this style of mineralization.

In 2010, MintoEx cut 18,739 core samples by diamond saw, located on site adjacent to the exploration camp. One half of the core was put into sample bags and then packaged into large rice bags with security zip seals and transported to the laboratory for assaying. From January 28, 2010, to May 5, 2010, 4,437 samples were sent to ALS Chemex in Vancouver for processing and assaying; samples were transported Whitehorse by Small's Expediting Ltd and then to Vancouver by Byers Transport.

When drilling resumed after a short break in the spring, 14,302 samples were sent to ALS Chemex in Whitehorse for processing and then to ALS Chemex in Vancouver for analysis from July 3 to December 15, 2010. The samples were transported initially to Whitehorse by Small's Expediting Ltd. and then in custody of ALS Chemex to Vancouver. The remaining half of the core was returned to the wooden boxes and remains on site as a record of the hole. The drill core was photographed after the sample tags were stapled to the boxes at the down hole end of each sample. Sample tags for standards were also stapled to the box in the order they were taken.

The 2010 drill core samples, blanks and SRMs were analyzed at the Vancouver Chemex laboratory for copper and gold analysis in North Vancouver. In addition, Chemex was also instructed to perform analysis on pulp and coarse reject duplicates injected into the sample stream at regular intervals. After August 2010, the pulp and coarse reject duplicates were returned to the MintoEx office in Vancouver, where they are transferred to fresh Kraft paper bags, assigned new sample numbers and resubmitted to Chemex as “blind duplicates”. The samples submitted to Chemex were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm) with a 250 g subsample split and pulverized to better than 85% passing -75 μm .

Copper was determined by aqua regia digestion method with final copper determination by ICP-ES (ME-ICP41). Non-sulfide copper was analyzed using sulfuric acid leach with AAS determination (Cu-AA05). When native copper was logged in drill core, a screen metallic copper method was used. Gold was determined using a fire assay procedure on a thirty grams sub-sample with atomic absorption spectroscopy finish. Silver was analyzed using aqua regia digestion and AAS finish.

11.1.6.2 MintoEx 2009

The mineralized intervals in core were sampled in lengths ranging from 0.19 m to 4.50 m and averaging 1.47 m with a median of 1.5 m from 13,026 sawn core samples. Sampling intervals were typically 1.5 m to 2.0 m in mineralized material and 3 m in longer waste intervals between mineralized zones. Drill core assay samples were collected from all foliated granodiorite horizons and, typically, sampling extended into the surrounding massive, un-foliated and unmineralized rock for at least 3.0 m. Individual samples do not cross the geological boundary between foliated and un-foliated rock which is generally a sharp contact.

In 2009, MintoEx cut 13,026 core samples by diamond saw, located on site adjacent to the exploration camp. One half of the core was put into sample bags and then packaged into large rice bags with security zip seals and transported to the laboratory for assaying. From February 4 to October 29, 2009, 13,026 samples were sent to ALS Chemex in Vancouver for processing and assaying. The samples were transported initially to Whitehorse by Small's Expediting Ltd. and then to Vancouver by Byers Transport. The remaining half of the core was returned to the wooden boxes and remains on site as a record of the hole.

The drill core was photographed after the sample tags were stapled to the boxes at the down hole end of each sample. Sample tags for standards were also stapled to the box in the order they were taken.

The 2009 drill core samples, blanks and SRMs were submitted to the Vancouver Chemex laboratory for copper and gold analysis in North Vancouver. In addition, Chemex was also instructed to perform analysis on pulp and coarse reject duplicates injected into the sample stream at regular intervals.

The samples submitted to Chemex were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm) with a 250 g subsample split and pulverized to better than 85% passing -75 μm . Copper was determined by aqua regia digestion method with final copper determination by ICP-ES (ME-ICP41). Gold was determined using a fire assay procedure on a thirty grams sub-sample with atomic absorption spectroscopy finish. Silver was analyzed using aqua regia digestion and AAS finish.

11.1.6.3 MintoEx 2008

The mineralized intervals in core were sampled in lengths ranging from 0.25 m to 4.20 m and averaging 1.29 m with a median of 1.3 m from 12,538 sawn core samples. Sampling intervals were typically 1.5 m in mineralized material and 3 m in longer waste intervals between mineralized zones. Drill core assay samples were collected from all foliated granodiorite horizons and, typically, sampling extended into the surrounding massive, un-foliated and unmineralized rock for at least 3 m. Individual samples do not cross the geological boundary between foliated and un-foliated rock which is generally a sharp contact.

In 2008, MintoEx cut 12,538 core samples by diamond saw, located on site adjacent to the exploration camp. One half of the core was put into sample bags and then packaged into large rice bags with security zip seals and transported to the laboratory for assaying. From March 8 to September 25, 2008, 6,450 samples from outside the Ridgetop area were transported by truck to SGS Laboratories (under contract agreement) at the Minto Mine Site, Yukon for assaying copper and silver.

During mid-July, MintoEx requested quality control copper reanalysis at the SGS Lakefield, Ontario facility after a switch failure at the Minto Mine Site facility. From July 27 to September 30, 2008, 6,087 samples were sent to ALS Chemex in Terrace for processing and on to Vancouver for assaying. The samples were transported initially to Whitehorse by Small's Expediting Ltd and then to Vancouver or Terrace by Byers Transport. The remaining half of the core was returned to the wooden boxes and remains on site as a record of the hole.

The drill core was photographed after the sample tags were stapled to the boxes at the down hole end of each sample. Sample tags for standards were also stapled to the box in the order they were taken.

Two laboratories were used in 2008. Drill core samples, blanks, SRMs and duplicates were submitted to SGS Laboratories under agreement with MintoEx, and to the Vancouver Chemex laboratory for copper and gold analysis in North Vancouver, BC after processing at the sample preparation facility in Terrace, BC. SGS Laboratories under agreement with MintoEx processed 61% of the total number of samples from areas outside of Ridgetop. The remaining 39% of the samples were analysed at the Vancouver Chemex Lab.

The samples submitted to SGS were first crushed in a jaw crusher to reduce the material to greater than 85% -10 mesh (2 mm). A 250 g subsample was then split and pulverized to better than 90% passing -75 μm . The pulp was split into one part analysed for copper and silver at the SGS facility at the Minto site and one part analysed for gold and non-sulfide copper at SGS Red Lake, ON operation. During mid-July, silver analyses were performed by SGS at Lakefield, ON and Don Mills, ON after a switch failure in SGS Minto ICP-AAS equipment. Copper reanalysis due to SRM failures was done by SGS at Lakefield and Don Mills in Ontario.

Copper was determined by aqua regia digestion method with final copper determination by atomic absorption spectroscopy ("AAS"). Non-sulfide copper was analyzed using sulfuric acid leach with AAS determination. Samples were assayed for gold using a fire assay procedure on a thirty grams sub-sample with atomic absorption spectroscopy finish. Silver was analyzed using aqua regia digestion and AAS finish.

The samples submitted to Chemex from July 27 to August 19 were first crushed in a jaw crusher to reduce the material to greater than 85% -10 mesh (2 mm). A 250g subsample was then split and pulverized to better than 90% passing -75 µm. The sample turnaround time increased to nearly 7 weeks after implementing the finer crush, so subsequent samples were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm) with a 250 g subsample split and pulverized to better than 85% passing -75 µm.

At Chemex, copper was determined by aqua regia digestion and ICP-ES finish (ME-ICP41) and/or by the four-acid digestion method (HF, HNO₃, HClO₄ digestion and HCl-leach) with final copper determination by atomic absorption spectroscopy ("AAS"). Non-sulfide copper was analyzed using sulfuric acid leach with AAS determination. Gold was determined by one assay-tonne fire assay analysis followed by AAS. Silver was analyzed using aqua regia digestion and AAS finish.

11.1.6.4 MintoEx 2007

The mineralized intervals in core were sampled in lengths ranging from 0.24 m to 3.49 m and averaging 1.33 m with a median of 1.5 m from 7,450 sawn core samples. Sampling intervals were typically 1.5 m in mineralized material and 3.0 m in longer waste intervals between mineralized zones. Drill core assay samples were collected from all foliated granodiorite horizons and, typically, sampling extended into the surrounding massive, un-foliated and unmineralized rock for at least 3.0 m. Individual samples do not cross the geological boundary between foliated and un-foliated rock which is generally a sharp contact.

In 2007, MintoEx cut 7,450 core samples with diamond saw, located on site adjacent to the exploration camp. One half of the core was put into sample bags and then packaged into large rice bags with security zip seals and transported to the laboratory for assaying. From July 5 to 15, 2007, 485 samples were transported by truck to SGS Laboratories (under contract agreement) at the Minto Mine Site, Yukon for assaying for copper and silver. Lab capacity was unsuited to a large, ongoing influx of exploration samples so no further samples were submitted. The coarse rejects for the 485 samples and sawn core for all subsequent samples were sent to ALS Chemex in Terrace for processing and on to Vancouver for assaying and ICP multi-element analysis. Samples were transported initially to Whitehorse by Small's Expediting Ltd and then to Vancouver or Terrace by bonded carrier, either Manitoulin Transport or Air North Ltd. The remaining half of the core was returned to the wooden boxes and remains on site as a record of the hole.

The drill core was photographed after the sample tags were stapled to the boxes at the down hole end of each sample. Sample tags for standards were also stapled to the box in the order they were taken.

The 2007 drill core samples, blanks SRMs and duplicates were submitted to Chemex, the primary laboratory, for copper and gold analysis in North Vancouver, Canada. Some samples were processed at other locations: SGS Laboratories in Vancouver, 6% of the total number of samples; Chemex-Elko, NV, USA processed 4% of the total number of samples, Chemex-Reno, NV, USA processed 10%, and Chemex-Terrace processed 50%.

The samples submitted to Chemex were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm). A 100 to 250 g subsample was then split and pulverized to better than 85% passing -75 µm. Copper was determined by aqua regia digestion and ICP-ES finish (ME-ICP41) and/or by four acid digestion methods (HF, HNO₃, HClO₄ digestion and HCl-leach) with final copper determination

by atomic absorption spectroscopy (“AAS”). Non-sulfide copper was analyzed using sulfuric acid leach with AAS determination. Gold was determined by one assay-tonne fire assay analysis. The gold analysis was determined using the AAS method. Silver was analyzed using aqua regia digestion and AAS finish. All sample submittals included SRM samples, blank samples and pulp and coarse reject duplicates to assure the quality of the assay data.

11.1.6.5 MintoEx 2005 to 2006

The mineralized intervals intersected in core have been sampled in lengths ranging from 0.3 m to 3.0 m and averaging 1.0 m to 1.5 m. The sampling intervals were typically 1.5 m in mineralized material and 3.0 m in longer waste intervals within the mineralized zones. Two shoulder samples were taken in waste at both the upper and lower contacts, consisting of a 1.5 m sample and a 1.0 m sample. Samples did not cross geological contacts.

MintoEx analyzed 1,391 sawn core samples in 2005 and 1,354 in 2006. The samples were tagged and then split in half using a rock saw on site. One half of the core was put into sample bags and then packaged into rice bags with security zip seals and sent to Vancouver for assaying. Manitoulin Transport was used to send the samples by ground in and Air North was commissioned in 2006 to air freight the samples. The remaining core was returned to the boxes and remains on site as a record of the hole. In 2005 and 2006, the core was photographed after the sample tags were stapled to the boxes at the down hole end of each sample. Sample tags for standards were also stapled to the box in the order they were taken.

During 2005 and 2006, drill core samples, blanks and duplicates were submitted to the Vancouver Chemex laboratory for copper and gold analysis in North Vancouver, Canada. In 2005, all samples were processed in Vancouver. In 2006, some samples were processed at other Chemex locations. Chemex-Elko, NV, USA processed 9% of the total number of samples and Chemex-Thunder Bay, ON processed 11%.

The samples submitted to Chemex were first crushed in a jaw crusher to reduce the material to greater than 70% -10 mesh (2 mm). A 100 to 250 g subsample was then split and pulverized to better than 85% passing -75 μ m. Copper was determined through aqua regia digestion with ICP-ES finish (ME-ICP41) and/or four acid digestion method (HF, HNO₃, HClO₄ digestion and HCl leach) with final copper determination by atomic absorption spectroscopy (“AAS”). Non-sulfide copper was analyzed using sulfuric acid leach with AAS determination.

Gold was determined by one assay tonne fire assay analysis. During 2005, all sample analysis was completed by gravimetric finish. During 2006, the first 17% (1,955) of the sample analysis was completed by gravimetric finish. For the remaining samples (9,182), the gold analysis was determined using AAS method. Silver was analyzed using aqua regia digestion and AAS finish.

All samples were accompanied by Standard Reference Material (“SRM”) samples, blank samples and pulp and coarse reject duplicates.

Blank material in 2005 and 2006 is approximately 1 kg of un-foliated granodiorite chips collected from a rock cut located on the main access road approximately 2 km due east of the Minto deposit. Two

standard reference material samples (SRM) were inserted for each batch of 20 samples, one for copper and one for gold.

11.1.6.6 Teck 1993 to 2001

From 1993 to 2001, Teck drilled 48 diamond drill holes on the Minto property. Sample lengths vary from 0.55 m to 2.75 m, averaging 1.59 m with a median of 1.53 m. A few stacks of 1994 core was reportedly discovered at the old location of the MintoEx camp site and at the Yukon Geological Survey core library but the bottom of the holes containing mineralized intervals were not present. No other usable drill core from the 1993 to 2001 period remains on-site.

Sampling protocols used for the Teck drill holes were not well documented. The historic samples would likely have been prepared on site from split core under the supervision of Teck and MintoEx geologists, bagged and shipped to the laboratory. It is considered unlikely officers or directors of Teck or MintoEx were involved in sample preparation.

Subsequent sample preparation such as crushing, pulverizing and sample splitting would have been the responsibility of the laboratory. Northern Analytical Services of Whitehorse, Yukon conducted analyses for copper, gold and silver. Analytical methods are not documented in the certificates of analysis for this work. Non-sulfide copper was not initially quantified by analysis of soluble copper at Northern Analytical Services.

Silver analysis was performed using reverse aqua regia digestion and AA determination. Bondar-Clegg of North Vancouver carried out the analyses of the 2001 samples. Each sample was coarse analysis, a 0.25 gm sample was digested with HCl, HNO₃, HClO₄ and HF acids with final copper determination by AA Spectroscopy. Gold and silver were determined by fire assay using a 30-gm sample and AA finish.

Quality control procedures used during the 1993 to 2001 drill programs are not known. The 2001 sample shipments were accompanied by 4 types of quality control samples, namely: a blank (granodiorite from the site), an ASARCO coarse standard, prepared pulp samples and duplicate splits (coarse ground rejects and the pulverized rejects). Some of the blanks were placed immediately following a rich copper sample and they returned trace amounts of Cu. This could possibly indicate minor contamination during the sample preparation process, but the amount of contamination was deemed insignificant (Simpson, 2001, as cited in SRK, 2008). All of the other quality control measures produced acceptable repeatability (Simpson, 2001, as cited in SRK, 2008) verifying the results of the 2001 drilling. Information regarding security of samples was not documented during the 1993 to 2001 drill programs.

11.1.6.7 ASARCO 1971 to 1974

There are no detailed descriptions of the historical sampling methods and quality control procedures used by ASARCO, it is thought that they favored 5 and 10 ft long samples. No usable core survives from that period. Subsequent sample preparation such as crushing, pulverizing and sample splitting would have been the responsibility of the laboratory. Chemex in Vancouver is believed to have been responsible for the 1970s analyses (Simpson, 2002, as cited in SRK, 2008). At the time, copper analyses were typically performed by digesting a 2 g sample pulverized to 100 mesh, in perchloric and nitric acid with an AA finish. Gold analyses in the 1970's probably used a 10 g pulp digested in aqua regia and an AA finish. Some of the early samples were not analyzed for precious metals. Most samples were

analyzed solely for total copper. The result is an incomplete data set in terms of gold and silver. Historically, non-sulfide copper was not universally quantified by analysis of soluble copper.

11.2 Minto QA/QC Summary

MMTS has been provided with several QAQC exports that reach back to 2005 and additional spreadsheets and quarterly QAQC reports related to the 2021 and 2022 drilling as produced by Equity Exploration Consultants. All relevant QAQC data was compiled by MMTS and, after review, combined with available drill core sample results into one QAQC-focused 'master' database that represents the source of all tables and plots in chapter 11 of this report.

While such a compilation is ideally done with input from raw certificate data, not only exports from the client's Datashed database and previously utilized data files generated during the 2021 PEA, the exercise still proved very useful as it led to a comprehensive review of most assay data used in the 2021 PEA. As a result, several numbers in QAQC data tables previously reported in the 2021 PEA, particularly insertion rates and failure percentage, were updated and related plots improved towards a more accurate representation of the data. Previously identified but not sufficiently corrected issues involved misclassification of standards and blanks, also to a lesser degree primary core samples and duplicates. All outstanding misclassification issues, as detected, are now resolved in the MMTS 'master' database used for resource modelling and a list of the corrections was reported back to the company for continued improvements of the Minto Datashed database.

The following plots and tables for data from 2005 to 2020 shown in section 11.3 to 11.6 replace the respective plots and tables in the 2021 PEA report. In contrast to the PEA however, rather than distinguishing between deposit areas at Minto, the data is split by primary lab. Sections 11.7 to 11.10 contain reviews and interpretations of the assay data of the most current drill campaigns of 2021 and 2022 which are post-PEA of 2021.

Table 11-2 shows that 16.6% of the total assay database are QAQC samples, which is approximately 4 in 25 samples and therefore is adequate for industry standards. Noticeably, no field duplicates were taken until 2014, and overall field duplicate sampling is strongly under-represented at approx. 0.13%.

Table 11-2: Total QAQC Samples by Year (all labs)

Year	Primary lab	Core samples	Blanks	CRMs	Field Dup	Coarse Dup	Pulp Dup	QAQC total	% QAQC	Check/Umpire	Check lab
2005	ALS	1,311	40	66	0	0	0	106	7.5%	89	ACME
2006	ALS	10,987	599	696	0	403	394	2,092	16.0%	272	ALS (1)
2007	ALS	10,926	682	682	0	555	700	2,619	19.3%	700	SGS/IPL
2008	ALS/SGS	12,537	696	713	0	174	1,030	2,613	17.2%	187	ALS
2009	ALS	13,419	852	814	0	873	822	3,361	20.0%	100	IPL
2010	ALS	18,712	1,184	1,221	0	1,167	1,151	4,723	20.2%	1,050	ALS
2011	ALS	18,375	1,105	1,107	0	561	547	3,320	15.3%	123	IPL
2012	ALS	11,543	699	728	0	315	344	2,086	15.3%	408	IPL
2013	No drilling	0	0	0	0	0	0	0	0.0%	0	
2014	ALS	1,869	112	110	32	39	43	336	15.2%	0	
2015	ALS	2,448	138	135	44	45	46	408	14.3%	0	
2016	ALS	559	31	30	1	15	13	90	13.9%	0	
2017	ALS	2,269	98	94	9	56	40	297	11.6%	0	
2018	ALS	979	63	56	5	26	21	171	14.9%	0	
2019	ALS	144	7	6	0	4	1	18	11.1%	0	
2020	ALS/SGS/MINTO	5,704	269	261	76	92	80	778	12.0%	70	SGS (2)
2021	BVM/MINTO	4,671	258	273	0	83	87	701	13.0%	0	
2022	BVM/MINTO	12,263	652	694	0	319	306	1,971	13.8%	0	
Total		128,716	7,485	7,686	167	4,727	5,625	25,690	16.6%	2,999	

Notes: "(1)": "intra-pulp" samples, "(2)": "re-sampled core". Blanks counts for 2020-2022 contain both "Blank_GR" and "Blank" as per provided data sheets.

11.3 2005-2020 QA/QC Introduction

As reported in the 2021 PEA, a coarse, presumably unmineralized local granodiorite material named 'Blank_GR' was used every year to control inter-sample contamination during preparation at the lab. Multiple buckets of the granodiorite were tested for Cu, Ag, C, and S at the Minto on-site lab to understand the materials background concentrations and potential usability as a blank. The analyses reported Cu <0.01% and Ag <1ppm in every instance.

Of the 6,556 total coarse blank insertions to 2020 that MMTS currently has records of, 6,453 were analyzed for Cu, 6,386 for Au, and 6,449 for Ag. The sample weight for these blanks varies strongly between 0.16kg and 1.96kg, with an average of 0.8kg, though this data was only provided for 22 samples. In 2020, a separate, likely purchased and pre-prepped blank was also inserted, labelled 'Blank' in the provided data and with reported sample weights consistently below 0.2g. MMTS does not currently have any detail about this second material.

Forty-eight (48) different and blindly inserted standards were utilized over time to understand accuracy of lab results with respect to Cu, and to a lesser degree, Au and Ag. Most were purchased from CDN Resource Labs in Delta/Langley, BC, 4 from WCM in Burnaby, BC, 1 from OREAS, and 3 were project-

specific standards produced from mineralized materials collected at Minto and certified by Smee and Associates in North Vancouver, BC. All but 3 standards are certified for Cu and 41 out of the 48 are certified for fire-assay Au, but only a select few of the CDN CRMs are certified for Ag.

Coarse and pulp duplicates were requested at appropriate rates of 9.4% to 16.7%, depending on the year, to control precision during the sample size reduction process. Only in 2014-2015 as well as 2020 were field duplicates taken in any meaningful quantity.

Assay results that could qualify as check assay or umpire data were produced in 2005-2012 by various secondary labs. Given the variance in selection rate year over year, MMTS assumes that these were not the product of formal and consistent check-assay procedures but rather served to answer specific questions about existing assay data at the time. The data was not reviewed in detail.

11.4 2005-2020 Blanks

By far the largest number of samples including blanks and standards in the assay database was prepped by ALS, though several different facilities including Whitehorse, Terrace, Vancouver, and Kelowna among others were contracted over the years. SGS results are available for 2008 and 2020, and in 2020 some results were produced at the Minto on-site lab. Table 11-3 details the blank (BLK) counts and failure by year, including failure rates for Cu and Au. Given the natural Cu background concentration of the coarse blank material, the failure threshold for Cu is set at 0.025% (dashed red line in Figure 11-1 and Figure 11-3), while the failure threshold for Au is 10x the detection limit of the respective method requested (red line).

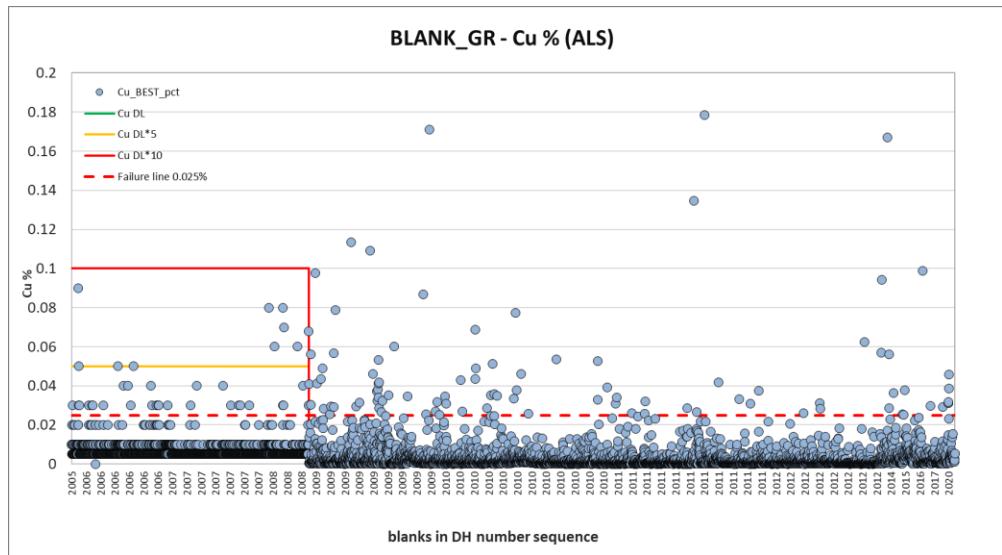
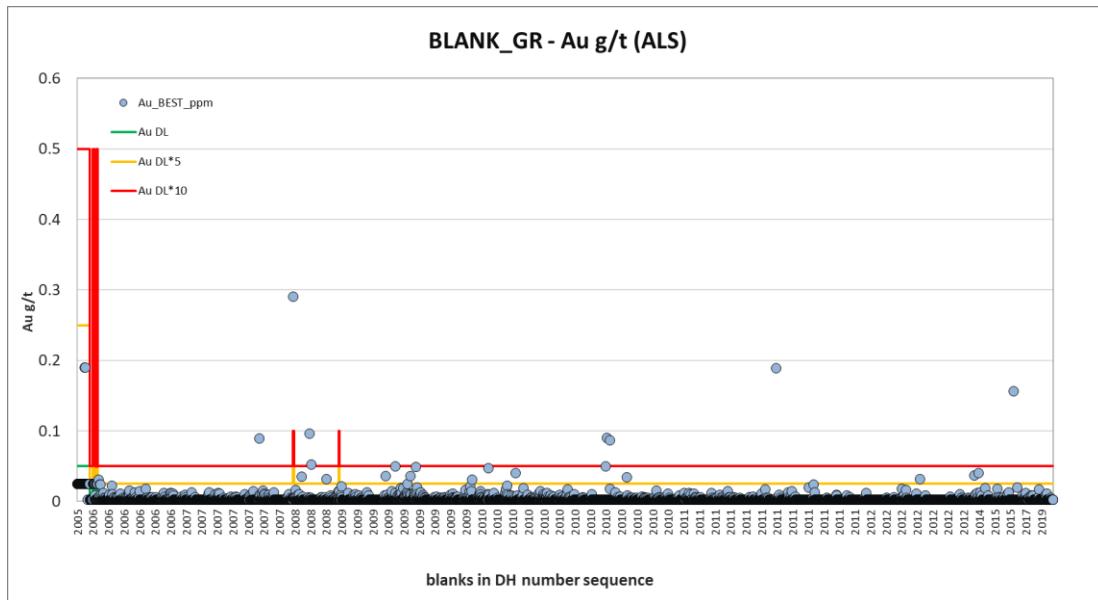

The overall 2.3% failure rate for Cu might be indicative of minor contamination issues at the laboratory but is probably also likely to represent natural variation in the granodioritic material. Spot-checking of several of the strongest outliers/failures and their preceding core samples was inconclusive.

Table 11-3: 2005-2020 Blank Count and Failures

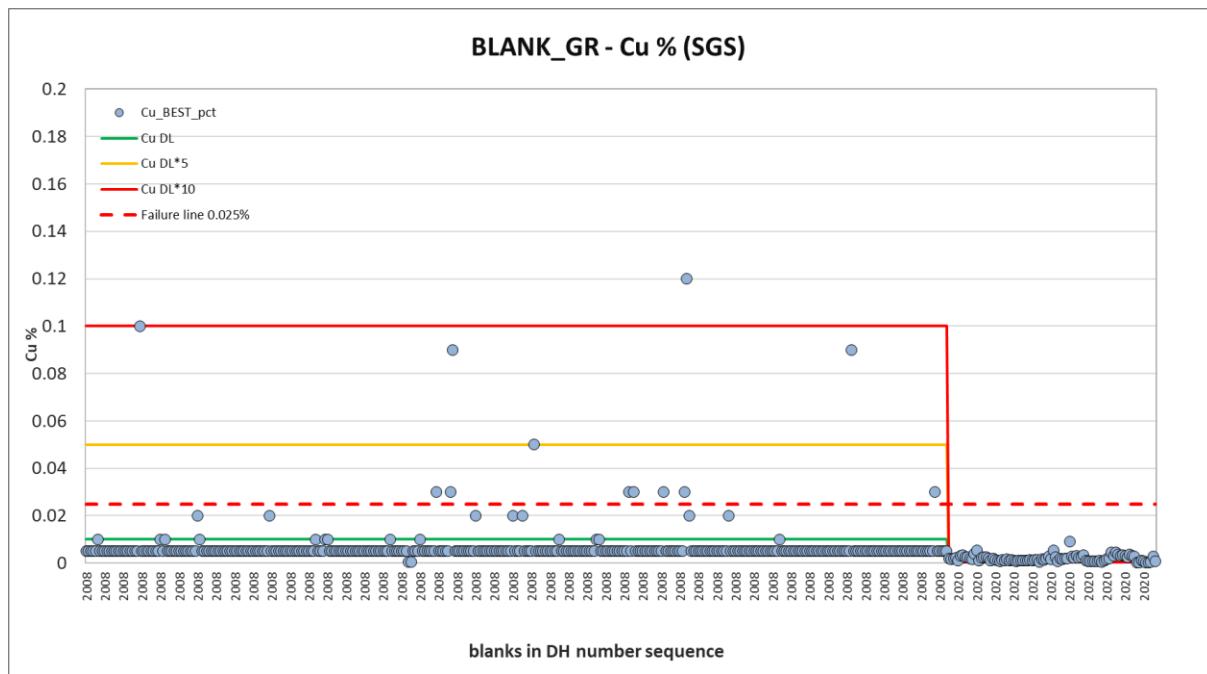
Year	Lab	Core samples	BLK Count Cu	Fails Cu	% Fails Cu	BLK Count Au	Fails Au	% Fails Au
2005	ALS	1,311	39	1	2.6%	39	0	0.0%
2006	ALS	10,987	589	18	3.1%	589	0	0.0%
2007	ALS	10,926	673	8	1.2%	673	1	0.1%
2008	ALS/SGS	12,537	682	24	3.5%	678	7	1.0%
2009	ALS	13,419	851	37	4.3%	851	0	0.0%
2010	ALS	18,712	1,181	23	1.9%	1,181	2	0.2%
2011	ALS	18,375	1,088	13	1.2%	1,088	1	0.1%
2012	ALS	11,543	694	4	0.6%	694	0	0.0%
2013	none	0	0	0	0.0%	0	0	0.0%
2014	ALS	1,869	112	6	5.4%	112	0	0.0%
2015	ALS	2,448	137	3	2.2%	137	0	0.0%
2016	ALS	559	29	0	0.0%	29	1	3.4%
2017	ALS	2,269	98	2	2.0%	98	0	0.0%
2018	ALS	979	58	1	1.7%	58	0	0.0%
2019	ALS	144	7	0	0.0%	7	0	0.0%
2020	ALS/SGS/MINTO	5,704	215	7	3.3%	152	0	0.0%
Total		111,782	6,453	147	2.3%	6,386	12	0.2%

The overall failure rates for blanks for gold is 0.2% with more than 50% of all failures (7) recorded in 2008. The pattern of the failures in 2008 does not match the Cu 'failures' that year, indicating that contamination has been only a minor problem, if any, and is being adequately addressed with current QA/QC procedures. MMTS recommends inserting a coarse blank that is less likely to occasionally contain varying amounts of meaningful Cu going forward.


The following graphs demonstrate the performance of Cu and Au in coarse blanks, separated by laboratory, sorted by year and drill hole. Figure 11-1 illustrates the relatively large number of outliers in Cu, with 130 exceeding the somewhat arbitrary 0.025% Cu failure line for a rate of 2.2%. The failure distribution appears random overall, though at multiple points in time the failures do plot in small groups along with numerous other blanks that reported elevated Cu in the 50ppm to 200ppm range, for example in 2009 and 2014-2016. MMTS interprets this as natural Cu concentration variability in the source rock.

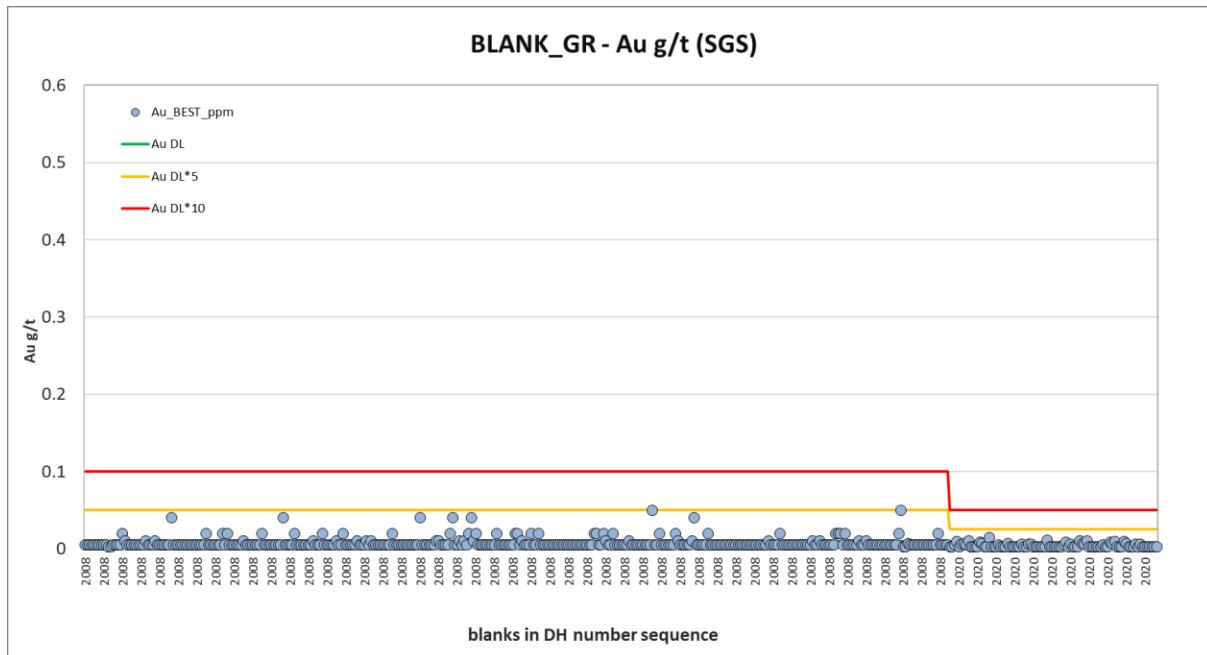
(Source: MMTS, 2025)

Figure 11-1 Blank Performance for ALS - Cu


Figure 11-2 shows Au concentration in ALS-prepped coarse blanks over time. The data does not indicate any meaningful contamination, and the 8 total failures appear without trend or connection. The failure rate is <0.15%.

(Source: MMTS, 2025)

Figure 11-2 Blank Performance for ALS - Au


Figure 11-3 graphs Cu results by SGS from 2008 (aqua regia digestion with AAS finish) and 2020 (aqua regia and ICP-ES). 15 of 489 results exceed the failure line of 0.025% Cu for a rate of 3.1%, all in 2008. The failures appear random.

(Source: MMTS, 2025)

Figure 11-3 Blank Performance for SGS - Cu

No failures were recorded in the fire-assay Au data by SGS and most of the data plots below the detection limit of 0.01ppm (2008) and 0.005ppm (2020).

(Source: MMTS, 2025)

Figure 11-4 Blank Performance for SGS - Au

The performance of the second blank as mentioned above is very good and without failure with respect to a 10x detection limit definition for Cu. In 2020 this blank was inserted 19 times over 14 drill holes to control contamination at the on-site lab at Minto. Only Cu and Ag results are available.

In summary, MMTS views the results as acceptable and does not have any concerns about cross-sample contamination that could meaningfully influence the resource estimation.

11.5 2005-2020 Standards

11.5.1 ALS Cu

The results of ALS analysis of 5,988 entries of 44 individual standards or Certified Reference Materials (CRM) for Cu from years 2005 through 2020, are presented in Table 11-4. The overall failure rate is 4.9% and failures are predominantly high at almost 94% of the total count. This overall high bias is also reflected in the Cu % error, which is positive for 26 out of 44 CRMs, meaning that the mean of actual assay results exceeds the certified expected value of the CRM. Noticeably, the 3 project-specific standards SRM-1, SRM-2, and SRM-3 all slightly under-perform and only recorded 3 failures in 591 Cu analyses (0.5%).

Two high-usage CRMs that performed particularly poorly as already identified in the 2021 PEA report are CDN-CGS-15 and CDN-CGS-23 (2008-2011). They account for 158 of the 273 high failures and strongly influence the significant high bias shown in for the years 2009-2011.

Table 11-4: 2005-2020 CRM Count and Failure ALS (Cu)

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
CDN-CGS-5	2006	37	0.16	0.16	0.006	1.5%	0	0	0.0%
CDN-CGS-7	2006-2007	238	1.01	1.01	0.035	0.4%	0	0	0.0%
CDN-CGS-8	2007	14	0.11	0.11	0.008	5.2%	0	1	7.1%
CDN-CGS-9	2006-2010	155	0.49	0.47	0.013	2.9%	0	1	0.6%
CDN-CGS-10	2006-2010	234	1.54	1.55	0.035	-0.7%	2	0	0.9%
CDN-CGS-11	2006-2010	510	0.69	0.68	0.013	1.5%	2	16	3.5%
CDN-CGS-12	2006-2010	187	0.27	0.27	0.008	1.4%	1	5	3.2%
CDN-CGS-13	2007	16	0.33	0.33	0.009	1.2%	0	0	0.0%
CDN-CGS-15	2008-2010	370	0.46	0.45	0.010	2.0%	1	35	9.7%
CDN-CGS-17	2008-2009	62	2.35	2.36	0.055	-0.5%	1	0	1.6%
CDN-CGS-18	2008-2009	266	0.33	0.32	0.008	2.4%	0	15	5.6%
CDN-CGS-21	2010-2011	40	1.26	1.30	0.042	-2.9%	1	0	2.5%
CDN-CGS-22	2010-2011	219	0.73	0.73	0.014	0.3%	0	5	2.3%
CDN-CGS-23	2010-2011	1,040	0.19	0.18	0.005	3.3%	2	123	12.0%
CDN-CGS-24	2010-2012	258	0.49	0.49	0.017	1.2%	0	4	1.6%
CDN-CGS-27	2011-2012	37	0.39	0.38	0.008	2.4%	1	9	27.0%
CDN-CGS-28	2011-2018	73	2.04	2.09	0.048	-2.3%	2	1	4.1%
CDN-CGS-29	2011-2012	97	0.58	0.59	0.017	-1.4%	0	0	0.0%
CDN-CGS-30	2017-2018	14	0.16	0.15	0.004	2.7%	0	3	21.4%
CDN-CM-2	2007-2009	108	1.02	1.01	0.022	1.0%	0	2	1.9%
CDN-CM-3	2008	1	0.54	0.55	0.011	-1.5%	0	0	0.0%
CDN-CM-5	2010	150	0.34	0.32	0.010	5.2%	0	23	15.3%
CDN-CM-8	2010	100	0.38	0.36	0.012	4.5%	1	7	8.0%
CDN-CM-16	2011-2015	418	0.19	0.18	0.007	2.1%	1	4	1.2%
CDN-CM-18	2016-2020	33	2.31	2.42	0.110	-4.9%	0	0	0.0%
CDN-CM-20	2012-2018	199	0.32	0.32	0.008	0.5%	0	2	1.0%
CDN-CM-23	2014-2017	35	0.47	0.47	0.013	-0.3%	0	0	0.0%
CDN-CM-24	2016-2020	5	0.39	0.37	0.010	5.4%	0	1	20.0%
CDN-CM-27	2014-2018	27	0.60	0.59	0.015	0.6%	0	0	0.0%
CDN-CM-31	2011-2020	11	0.08	0.08	0.003	0.5%	0	1	9.1%
CDN-CM-33	2017-2018	4	0.36	0.35	0.007	2.7%	0	1	25.0%
CDN-CM-34	2014-2018	44	0.58	0.58	0.020	-0.2%	0	0	0.0%
CDN-CM-36	2015-2020	56	0.23	0.23	0.005	0.8%	0	0	0.0%
CDN-CM-41	2016-2018	11	1.71	1.71	0.025	-0.2%	0	0	0.0%
CDN-FCM-1	2006	7	0.95	0.94	0.035	0.9%	0	0	0.0%
SM-04	2020	41	3.79	3.80	0.060	-0.1%	0	0	0.0%
SRM-1	2009-2018	290	1.13	1.14	0.040	-0.5%	1	2	1.0%
SRM-2	2009-2017	163	2.77	2.82	0.073	-1.8%	0	0	0.0%

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
SRM-3	2009-2018	138	5.17	5.34	0.222	-3.2%	0	0	0.0%
SRM-95	2007-2010	15	2.54	2.57	0.070	-1.1%	0	0	0.0%
WCM-CU115	2005-2006	70	1.02	0.99	0.023	2.5%	0	3	4.3%
WCM-CU116	2005-2006	68	0.48	0.47	0.009	2.9%	0	9	13.2%
WCM-CU128	2006-2007	52	2.59	2.60	0.043	-0.4%	0	0	0.0%
WCM-CU132	2005-2006	75	0.17	0.17	0.006	0.6%	2	0	2.7%
Total		5,988					18	273	4.9%

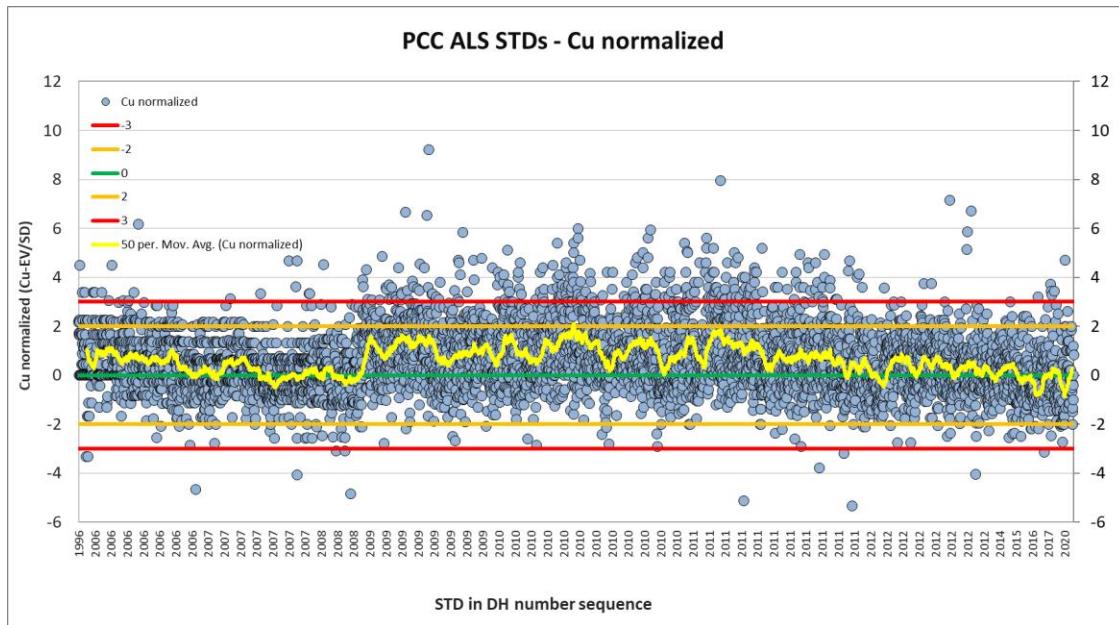
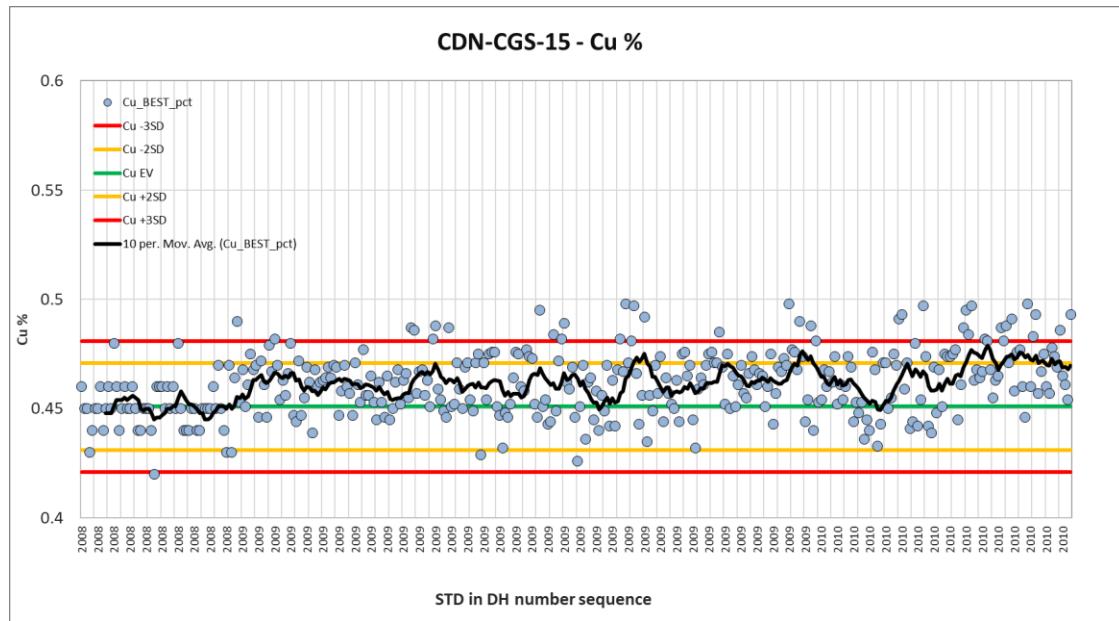

It has been reported that Minto Exploration monitored results and ordered re-assaying of a failed sample batch “if a re-assay was warranted” (Minto Explorations, 2012). MMTS is not aware of the “warranted” definition that would have triggered re-assaying at the time.

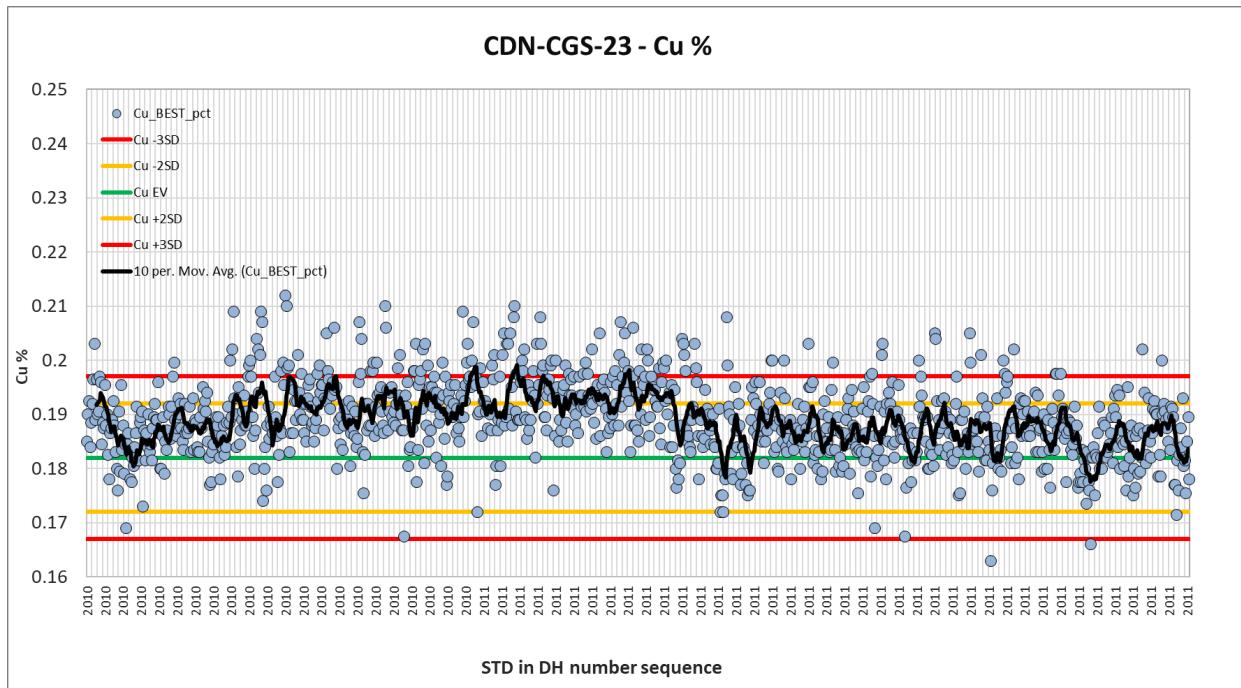
Figure 11-5 graphs all ALS-generated blind standard assay results in a normalized process control chart, using the certified “expected” values (EV) and the equally provided standard deviations (SD). 5,984 data points are plotted over time, sorted by drill hole number, with z-scores of +3 and -3 defined as the failure thresholds. 9 data points were generated from re-sampling of 1996 core in 2005 in addition to 66 CRMs utilized in 2005 drilling. The graph contains too much data to show ‘2005’ on the x-axis.

A 50-sample moving average line (yellow for better visibility) is added to highlight trends and any potential biases. The CRM performance from 2005 to 2008 is acceptable with only a small trend from moderately high normalized Cu results in 2005 and 2006 to a very consistent and accurate performance in 2007 and 2008. In these 4 years Minto had samples analyzed by the multi-element aqua regia ME-ICP41 method and in addition also ordered the ore-grade Cu-AA62 method for almost all samples a 4-acid digestion with atomic absorption finish (AAS). Cu-AA62 basically served as the ‘over-limit’ method for any results >1% Cu which is the upper reporting limit in ME-ICP41. This resulted in two comprehensive Cu datasets of which the AAS Cu data was to be prioritized.

An obvious Cu data shift from 2008 into 2009 can be identified in Figure 11-5, leading to the significant high bias of approx. 2.5% on average that extends out to the end of 2011. A total of 239 high failures are recorded for those 3 years (of 3,038 total results, or 7.8%), versus 6 low outliers (0.2%). This appears to be caused by a switch in digestion and finish methods at ALS as from 2009 onwards the ME-ICP41 aqua regia method was chosen exclusively, and all ‘over-limit’ >1% samples of the respective lab reports were re-analyzed by Cu-OG46 which is equally an aqua regia digestion and ICP finish but on less material (0.4g) and with a wider and higher ‘ore-grade’ reporting window of 0.001-50% Cu. Several CRMs were used in both periods and display the same obvious data shift in individual plots (see CDN-CGS-15 plot included in this report as an example).


From 2012 to 2020 the moving average mirrors the EV line which demonstrates acceptable accuracy, and the number of failures is much reduced from the 2009-2011 period.

(Source: MMTS, 2025)


Figure 11-5 Normalized Standard Performance for ALS - Cu

Some of the poor performers of the CRM group are CDN-CGS-15 and CDN-CGS-23, as mentioned above, which represent Cu grades below cut-off at Minto. Figure 11-6 for CDN-CGS-15 illustrates the data shift from 2008 into 2009, while Figure 11-7 displays a consistent high bias in 2010-2011 for CDN-CGS-23.

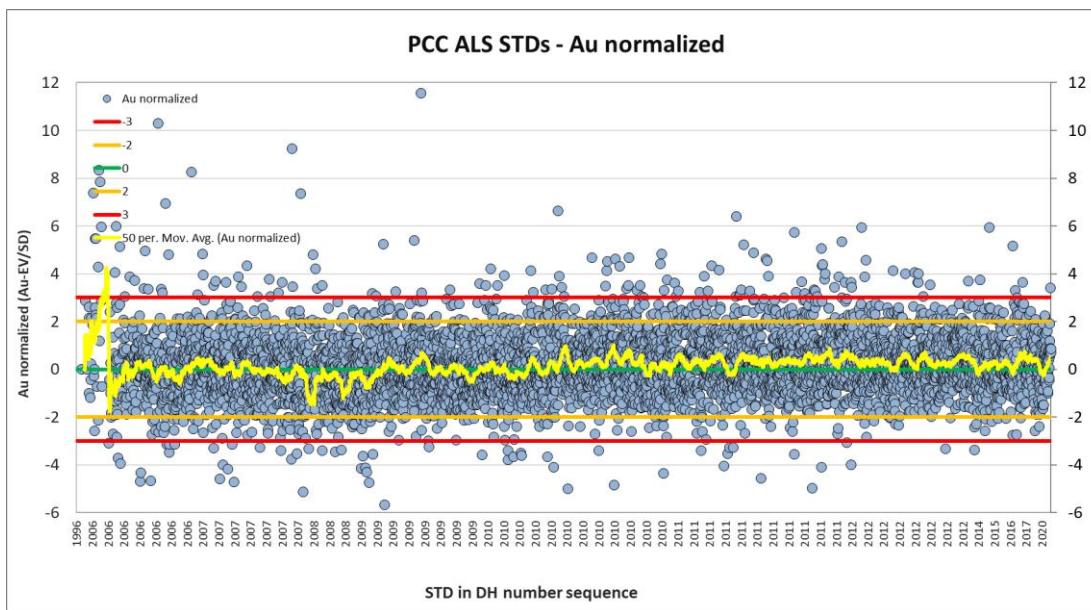
(Source: MMTS, 2025)

Figure 11-6 Standard performance for CDN-CGS-15 - Cu

(Source: MMTS, 2025)

Figure 11-7 Standard Performance for CDN-CGS-23 - Cu

11.5.2 ALS Au


Table 11-5 lists the details of all standards inserted 2006-2020 that are certified for Au and were analyzed by ALS. The overall failure rate approaches 5% but this relatively high number is strongly influenced by two standards in particular that were used early in the time frame and performed extremely poorly: CDN-GS-P2A and WCM-CU132. All 16 CDN-GS-P2A results came in consistently at about 2g/t Au while the expected value for the CRM is only 0.229g/t Au, or approx. 10% of the actual results. This systematic error is currently unexplained.

Also in 2005-2006, WCM-CU132 was inserted 75 times and analyzed for Au 68 times. 43 of these analyzes reported as <DL of 0.05g/t versus the expected value of 0.17g/t Au, leading to the very high low failure rate shown in the table. Also, the Ag analysis performance of WCM-CU132 was very inconsistent (not shown in this report) while Cu performed well. This issue remains unexplained and the <DL data for this standard is excluded in the PCC Au plot in Figure 11-8.

Table 11-5: Summary of Standards for ALS - Au

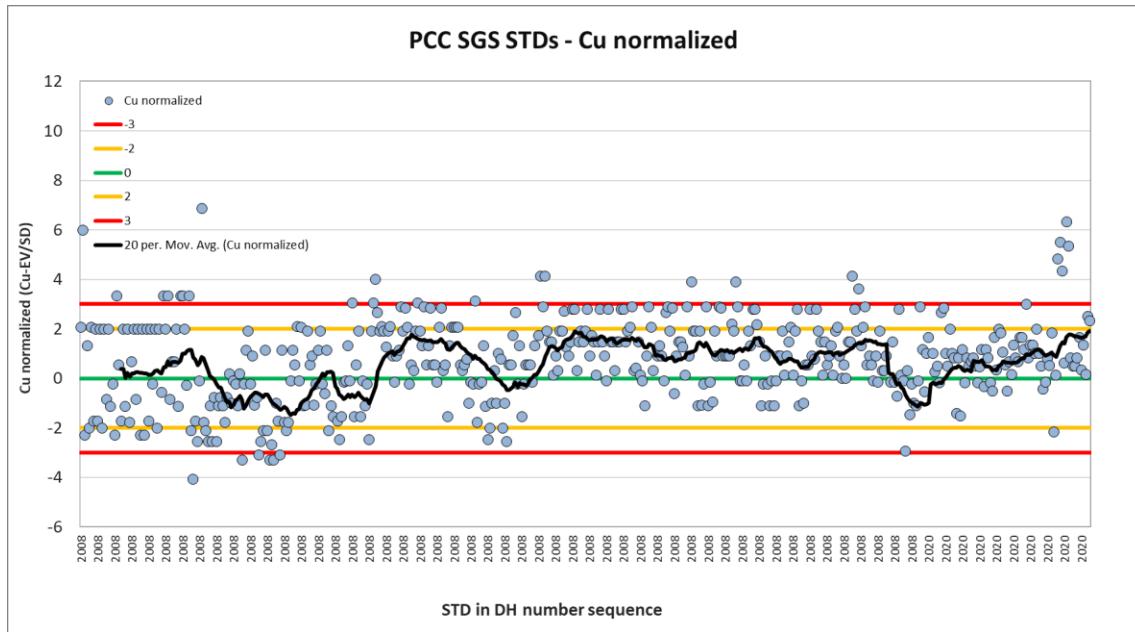
Standard	Year	Count Au	Au g/t mean	Au g/t EV	Au g/t SD	Au % error	Au Fails Low	Au Fails High	Au Fails %
CDN-CGS-5	2006	37	0.13	0.13	0.020	2.4%	0	0	0.0%
CDN-CGS-7	2006-2007	238	0.96	0.95	0.040	0.7%	2	4	2.5%
CDN-CGS-8	2007	14	0.08	0.08	0.012	-6.4%	1	0	7.1%
CDN-CGS-9	2006-2010	153	0.34	0.34	0.017	0.6%	3	9	7.8%
CDN-CGS-10	2006-2010	231	1.68	1.73	0.075	-3.3%	8	0	3.5%
CDN-CGS-11	2006-2010	510	0.71	0.73	0.034	-2.5%	19	3	4.3%
CDN-CGS-12	2006-2010	187	0.29	0.29	0.020	0.7%	5	15	10.7%
CDN-CGS-13	2007	16	1.01	1.01	0.055	-0.3%	0	1	6.3%
CDN-CGS-15	2008-2010	370	0.56	0.57	0.030	-1.0%	7	7	3.8%
CDN-CGS-17	2008-2009	62	2.36	2.43	0.170	-2.8%	2	0	3.2%
CDN-CGS-18	2008-2009	266	0.30	0.30	0.020	-0.6%	2	2	1.5%
CDN-CGS-21	2010-2011	41	0.96	0.99	0.045	-2.6%	2	0	4.9%
CDN-CGS-22	2010-2011	220	0.64	0.64	0.030	0.3%	3	2	2.3%
CDN-CGS-23	2010-2011	1,040	0.22	0.22	0.018	2.6%	9	39	4.6%
CDN-CGS-24	2010-2012	258	0.49	0.49	0.025	0.9%	1	7	3.1%
CDN-CGS-27	2011-2012	37	0.45	0.43	0.023	3.3%	1	1	5.4%
CDN-CGS-28	2011-2018	73	0.74	0.73	0.038	2.0%	1	0	1.4%
CDN-CGS-29	2011-2012	97	0.23	0.23	0.015	2.7%	0	5	5.2%
CDN-CGS-30	2017-2018	14	0.35	0.34	0.024	3.6%	0	0	0.0%
CDN-CM-2	2007-2009	108	1.44	1.42	0.065	1.5%	0	3	2.8%
CDN-CM-3	2008	1	0.26	0.46	0.030	-76.9%	1	0	100.0%
CDN-CM-5	2010	150	0.30	0.29	0.023	1.0%	2	4	4.0%
CDN-CM-8	2010	100	0.91	0.91	0.055	0.5%	0	0	0.0%
CDN-CM-16	2011-2015	418	0.30	0.29	0.023	2.2%	1	11	2.9%
CDN-CM-18	2016-2020	33	5.21	5.28	0.175	-1.3%	0	0	0.0%
CDN-CM-20	2012-2018	199	0.29	0.28	0.022	3.7%	1	2	1.5%
CDN-CM-23	2014-2017	35	0.55	0.55	0.030	0.3%	0	1	2.9%
CDN-CM-24	2016-2020	5	0.51	0.52	0.028	-1.8%	0	0	0.0%
CDN-CM-27	2014-2018	27	0.64	0.64	0.034	1.0%	0	0	0.0%
CDN-CM-36	2015-2020	56	0.32	0.32	0.017	2.7%	0	2	3.6%
CDN-CM-41	2016-2018	11	1.60	1.60	0.075	0.3%	0	0	0.0%
CDN-FCM-1	2006	7	1.73	1.71	0.070	1.4%	0	0	0.0%
CDN-GS-P2A	2006	16	2.14	0.23	0.015	89.3%	0	16	100.0%
CDN-GS-P5	2006	19	0.57	0.53	0.021	8.5%	2	7	47.4%
SM-04	2020	41	1.38	1.35	0.062	2.0%	0	0	0.0%
SRM-1	2009-2018	290	0.43	0.43	0.019	1.4%	2	7	3.1%
SRM-2	2009-2017	163	1.60	1.57	0.070	1.6%	1	1	1.2%
SRM-3	2009-2018	138	2.19	2.23	0.085	-1.8%	1	0	0.7%
WCM-CU132	2005-2006	68	0.11	0.17	0.007	-52.1%	44	10	79.4%
Total		5,749					121	159	4.9%

Figure 11-8 demonstrates the performance of >5,700 standards analyzed for Au over time with results normalized. The 50-sample moving average (yellow) shows the overall acceptable accuracy. Very strong scatter noted in early 2006 is related to the poor performance of two standards described above. The usage of the two standards was discontinued after drill hole 06SWC083 and Sherwood Copper continued to drill 85 more holes that year which indicates to MMTS that the QA/QC protocols in place at the time were being followed and accuracy controls were being monitored.

(Source: MMTS, 2025)

Figure 11-8 Normalized Standard Performance for ALS - Au

11.5.3 SGS Cu


SGS was contracted as the primary lab in 2008 and 2020. Fifteen (15) of the standards utilized in these years are certified for Cu (Table 11-6), covering a Cu grade range from 0.08g/t to 3.8g/t which is overall acceptable for the Minto deposits. The failure rate is >7% and 70% of all failures are high failures. In addition, there is a noticeable overall high bias for Cu of approx. 3% in the 2008 SGS data starting with certificate RL32544 (drill hole 08SWC299) that persists to certificate RL33645 (08SWC378). Figure 11-9 illustrates the standards performance over time (normalized).

Shown in the late 2020 part of Figure 11-9, a distinct group of high Cu failures are reported in certificates BBM20-05416 and BBM20-05417, affecting 116 partially well mineralized core samples from two drill holes (20UG119 and 20UG120). The sample analyses of the respective reports should have been re-run as per Minto protocols. MMTS is not aware of additional data in that respect.

Table 11-6: Summary of Standards for SGS - Cu

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
CDN-CGS-10	2008	19	1.50	1.55	0.035	-3.6%	0	0	0.0%
CDN-CGS-11	2008	96	0.68	0.68	0.013	-0.7%	5	1	6.3%
CDN-CGS-12	2008	26	0.28	0.27	0.008	6.1%	0	7	26.9%
CDN-CGS-15	2008	114	0.46	0.45	0.010	1.7%	2	2	3.5%

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
CDN-CGS-17	2008	6	2.37	2.36	0.055	0.2%	0	0	0.0%
CDN-CGS-18	2008	49	0.33	0.32	0.008	4.0%	0	3	6.1%
CDN-CGS-21	2008	1	1.26	1.30	0.042	-3.2%	0	0	0.0%
CDN-CM-2	2008	55	1.00	1.01	0.022	-1.0%	1	1	3.6%
CDN-CM-3	2008	26	0.55	0.55	0.011	1.1%	1	5	23.1%
CDN-CM-27	2020	2	0.57	0.59	0.015	-3.8%	0	0	0.0%
CDN-CM-31	2020	6	0.08	0.08	0.003	-0.7%	0	0	0.0%
CDN-CM-33	2020	6	0.35	0.35	0.007	0.9%	0	0	0.0%
CDN-CM-36	2020	1	0.23	0.23	0.005	-1.2%	0	0	0.0%
SM-04	2020	65	3.87	3.80	0.060	1.9%	1	5	9.2%
SRM-95	2008	4	2.62	2.57	0.070	2.0%	0	0	0.0%
Total		476					10	24	7.1%

(Source: MMTS, 2025)

Figure 11-9 Normalized Standard Performance for SGS - Cu

11.5.4 SGS Au

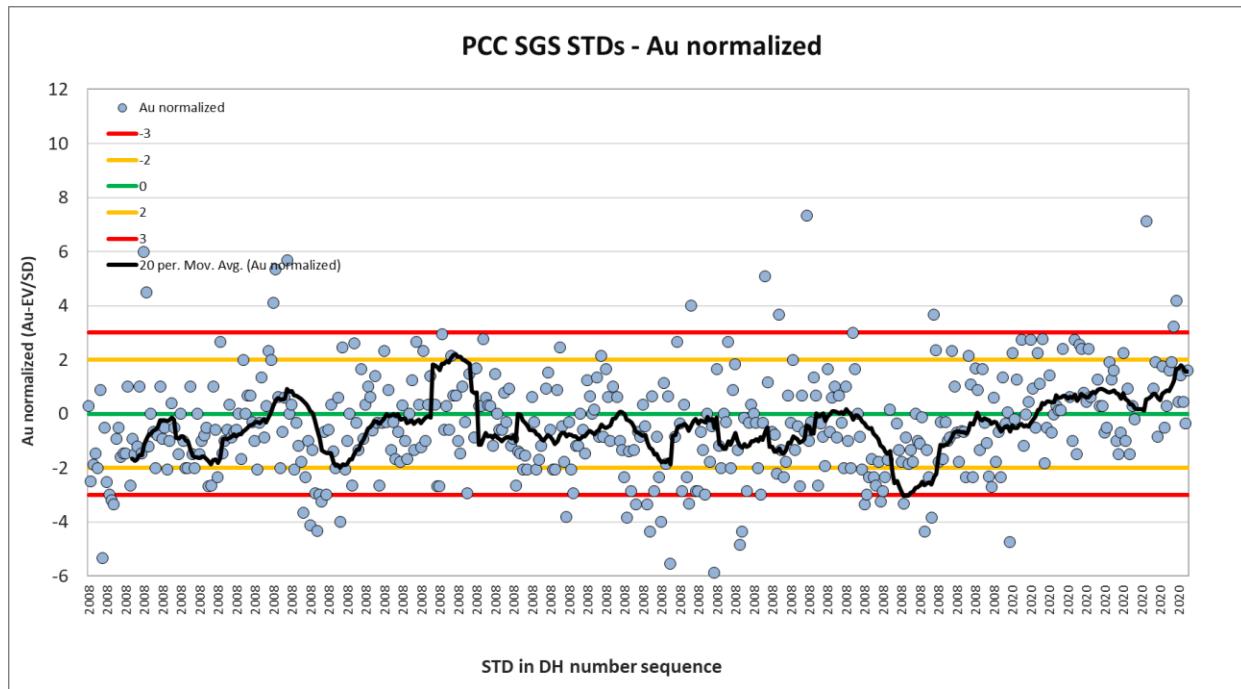

The simple statistical performance of 12 standards analyzed by SGS for Au in 2008 and 2020 is summarized in Table 11-7. Several CRMs used in 2008 perform poorly and record failure rates of >10% which leads to an overall failure rate of 9.8%, 66% of which are low failures mainly driven by CDN-CGS-18.

Table 11-7: Summary of Standards for SGS - Au

Standard	Year	Count Au	Au g/t mean	Au g/t EV	Au g/t SD	Au % error	Au Fails Low	Au Fails High	Au Fails %
CDN-CGS-10	2008	19	1.55	1.73	0.075	-11.5%	3	0	15.8%
CDN-CGS-11	2008	97	0.69	0.73	0.034	-6.2%	6	1	7.2%

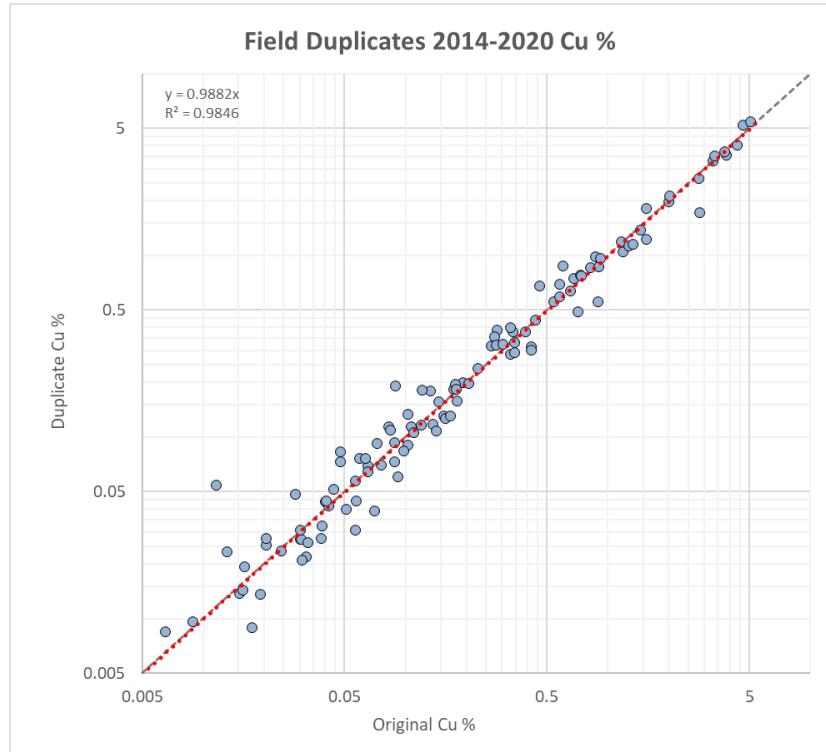
Standard	Year	Count Au	Au g/t mean	Au g/t EV	Au g/t SD	Au % error	Au Fails Low	Au Fails High	Au Fails %
CDN-CGS-12	2008	26	0.28	0.29	0.020	-2.7%	1	2	11.5%
CDN-CGS-15	2008	114	0.56	0.57	0.030	-1.7%	7	6	11.4%
CDN-CGS-17	2008	6	2.26	2.43	0.170	-7.5%	0	0	0.0%
CDN-CGS-18	2008	49	0.27	0.30	0.020	-9.1%	10	1	22.4%
CDN-CGS-21	2008	1	0.89	0.99	0.045	-11.2%	0	0	0.0%
CDN-CM-2	2008	55	1.44	1.42	0.065	1.2%	1	2	5.5%
CDN-CM-3	2008	26	0.46	0.46	0.030	-0.3%	1	0	3.8%
CDN-CM-27	2020	2	0.67	0.64	0.034	5.7%	0	0	0.0%
CDN-CM-36	2020	1	0.32	0.32	0.017	0.3%	0	0	0.0%
SM-04	2020	65	1.40	1.35	0.062	3.2%	1	3	6.2%
Total		461					30	15	9.8%

Figure 11-10 graphs the normalized Au results over time. Some far outliers have been excluded for scale. Accuracy is overall moderate to poor because of the significant bilateral scatter and the high failure rate. Multiple certificates should have been re-run. In summary the dataset averages to a small negative bias.

(Source: MMTS, 2025)

Figure 11-10 Normalized Standard Performance for SGS - Au

11.6 2005-2020 Duplicates

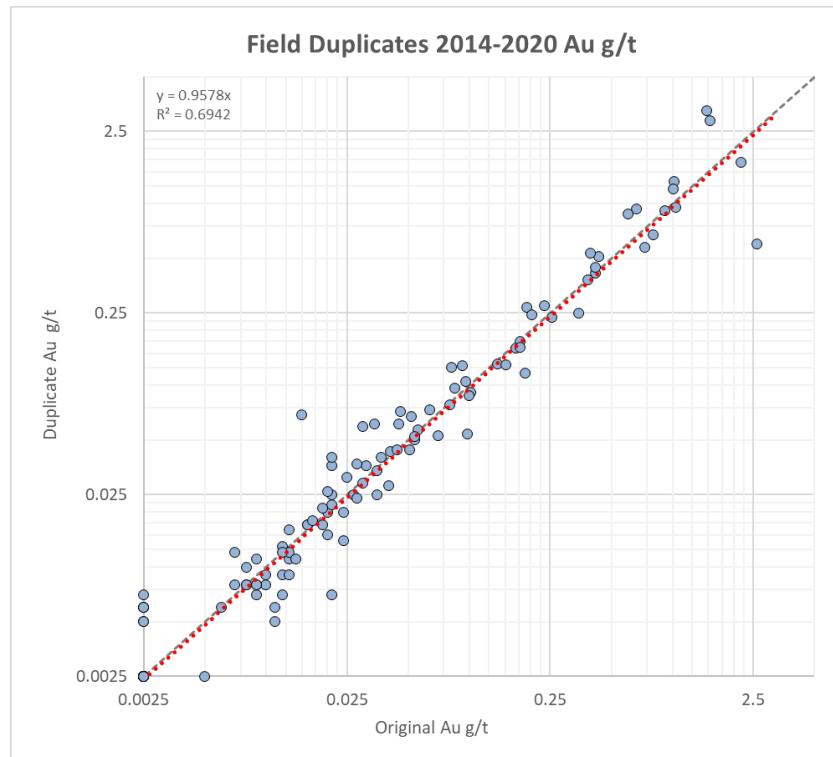

Table 11-2 details the counts and insertion rates of the various duplicates, analyzed to assess reproducibility during the sample size reduction process starting with core cutting at site and continuing with crushing and pulverizing at the respective labs. The presented field duplicate data combines ALS and SGS results as they are meant to illustrate natural variability at the sampling stage generally

irrespective of the lab used. To efficiently assess this, certain data like core sample weights, field duplicate sample rate, and spatial distribution of the selected original-duplicate pairs with an eye on the represented lithology are very helpful. At Minto, very few field duplicates were taken (167 samples in only 5 out of 15 drill seasons between 2005 and 2020) for a total rate of 0.13%. Cu and Au results exist for 148 of the 167 duplicate samples, split 76% to 24% between ALS and SGS, respectively.

Both coarse duplicates (3.7% insertion rate) and pulp duplicates (4.4%) are much more frequent in the Minto database than field duplicates. Most of the data was generated between 2006 and 2012, on par with the amount of drilling completed in those years. As with blanks and standards, the data is presented split between ALS and SGS. MMTS has not reviewed the respective lab-internal prep and pulp duplicate QA/QC performances.

11.6.1 Field Duplicates

Shown in a simple scatter plot in Figure 11-11, the correlation between original sample Cu data and duplicate sample Cu data is very good, indicating appropriate sampling protocols and a lack of meaningful natural variability across a wide range of concentrations at the scale of drill core sampling. The Cu-bearing minerals in Minto ore appear distributed in a way that allows for representative and reproducible precise sampling.

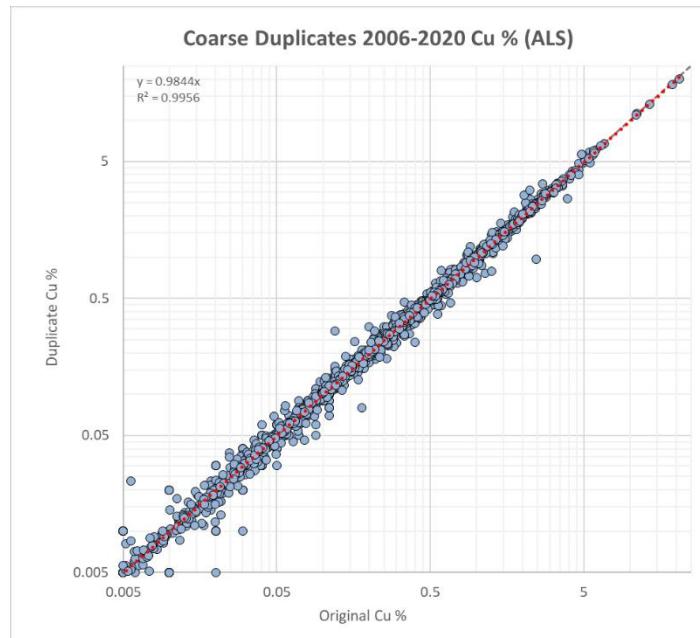


(Source: MMTS, 2025)

Figure 11-11 Field Duplicates - Cu

Figure 11-12 graphs the Au results of the 148 field original and duplicate pairs. Despite the known association of Au and Cu at Minto, the overall correlation as indicated by R^2 at 0.69 is lower than for Cu.

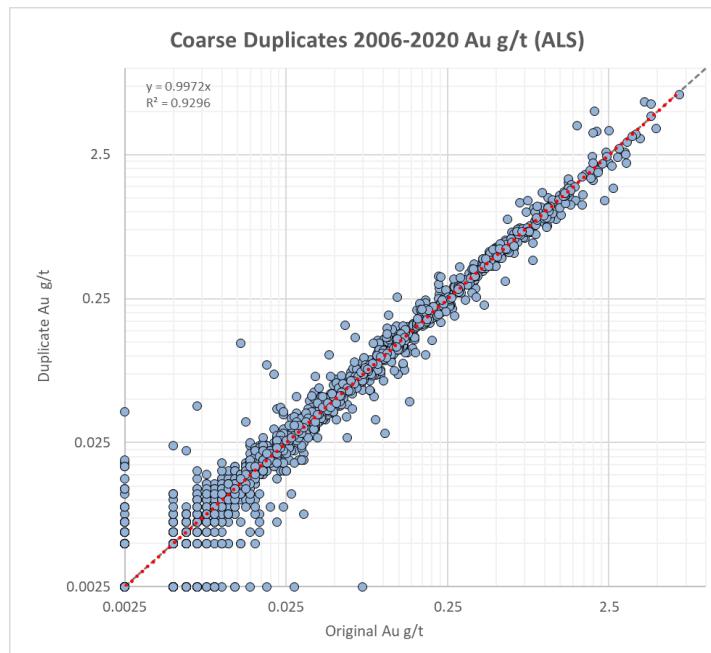
This is strongly influenced by a few high-grade sample pairs for which the reproducibility is poor, without obvious bias. MMTS views the shown precision for Au as acceptable as a theoretical removal of the one high-grade original-positive outlier increases the R^2 to 0.85.



(Source: MMTS, 2025)

Figure 11-12 Field Duplicates - Au

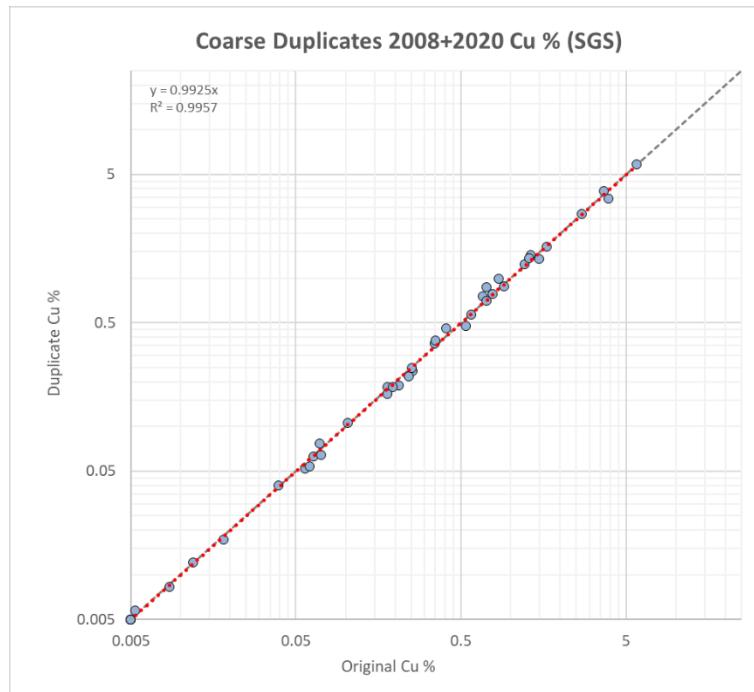
11.6.2 Coarse Duplicates


The Minto database contains an extensive amount of client-induced coarse (prep) duplicate data that was generated every year except 2005. Figure 11-13 illustrates a very good correlation for Cu (R^2 at 0.99) with a very small number of outliers that plot in distance to the 1-1 line for the ALS-generated population of the data. The grade distribution is also very good to >5% Cu and even highest-grade coarse duplicates show perfect reproducibility at the crushing and splitting stage of sample preparation.

(Source: MMTS, 2025)

Figure 11-13 Coarse Duplicates from ALS - Cu

ALS coarse duplicates Au results are shown in Figure 11-14. The correlation is very good (R^2 at 0.93) with an acceptable amount of scatter and no significant bias.



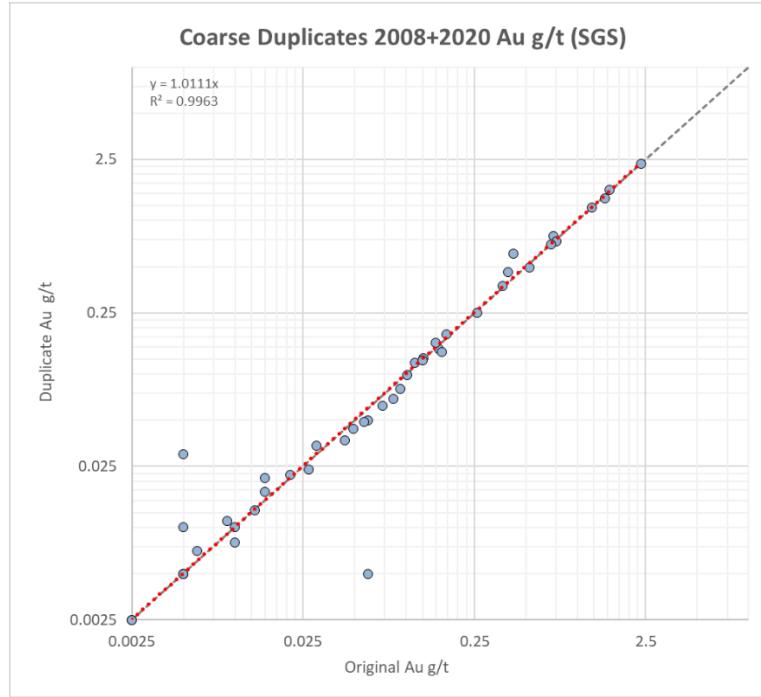

(Source: MMTS, 2025)

Figure 11-14 Coarse Duplicates from ALS - Au

Coarse duplicates produced by SGS in 2008 and 2020 demonstrate very good reproducibility for both Cu and Au on a much smaller dataset of 45 duplicates that is caused by the significantly lower count of samples sent to SGS compared to ALS, yet at comparable insertion rates at least for 2020 at 1.4%. In 2008, however, coarse duplicates were only requested for 6 out of 7,230 core samples (<0.1%), all in the first hole drilled that season (08SWC271), therefore failing to control precision at this stage of sample reduction for most of that year. MMTS did not review the lab-internal QA/QC.

The R^2 are 0.99 each and no significant scatter or bias is noted. Figure 11-15 shows Cu and Figure 11-16 plots the Au results.

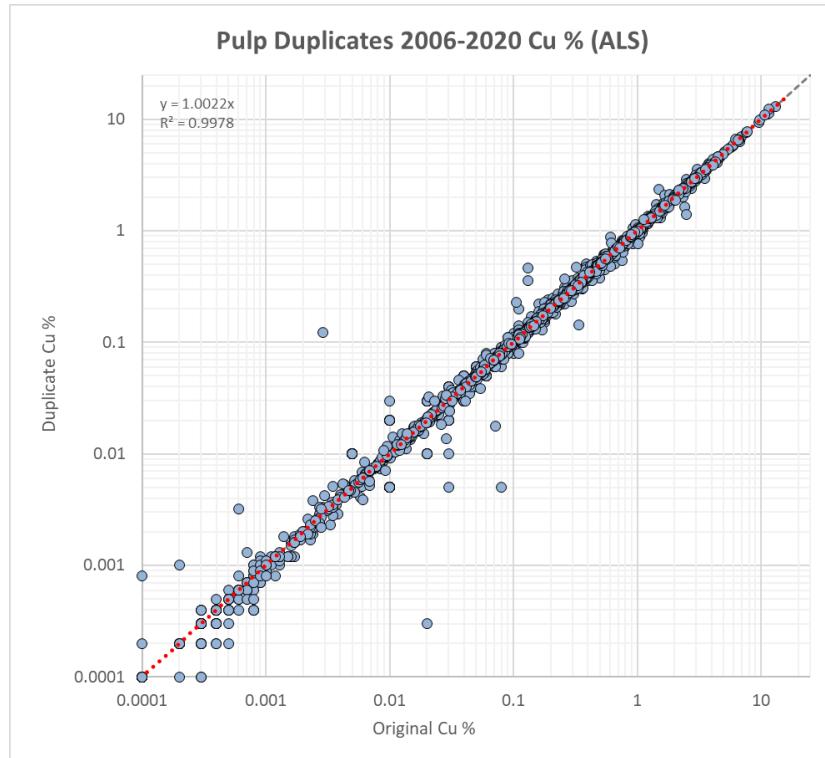
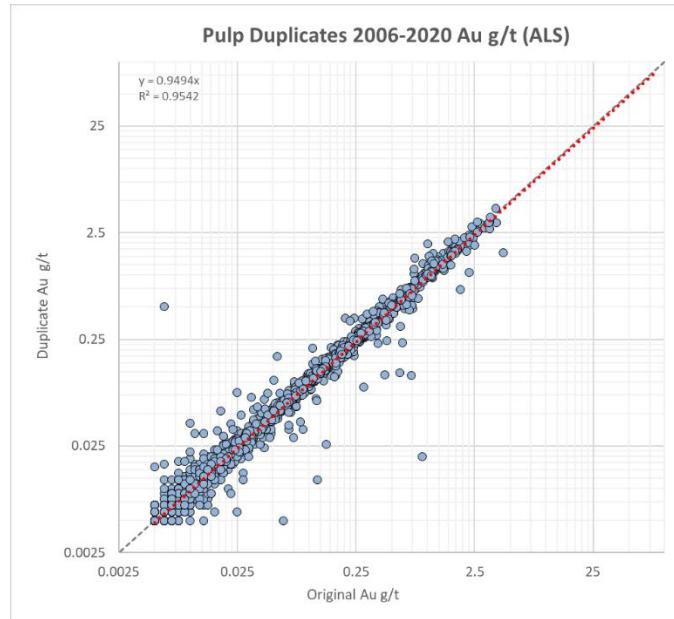

(Source: MMTS, 2025)

Figure 11-16 Coarse Duplicates from SGS - Au

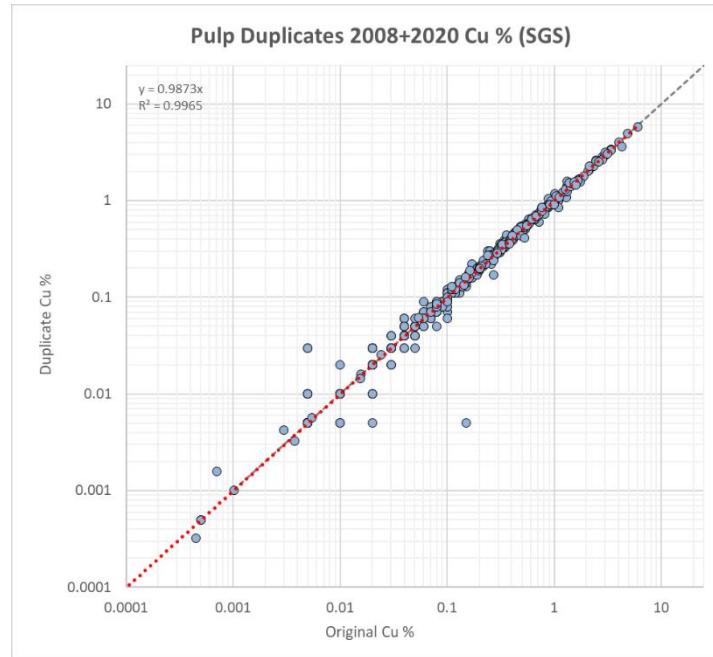
11.6.3 Pulp Duplicates

2,823 total Cu results for pulp duplicates produced by ALS are contained in the Minto database, as shown in Figure 11-17. For 2010-2012, only a select few data are available to MMTS. Starting with drill hole 10SWC636, a total of 1,673 pulp duplicates are recorded but results for Cu and Au not provided.


As expected, the original-duplicate pairs correlate very well ($R^2=0.99$) across a wide Cu concentration range that exceeds 10% which is appropriate for a high-grade deposit like Minto. Approx. 1% of the data correlates poorly (shown as unbiased scatter in Figure 11-17) which is an acceptable amount.

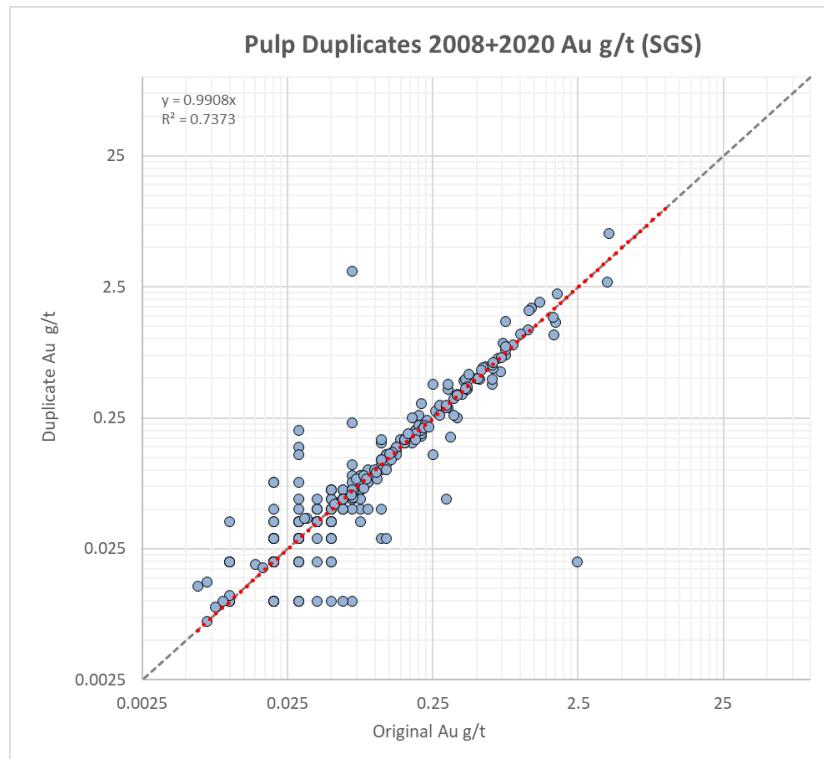
(Source: MMTS, 2025)

Figure 11-17 Pulp Duplicates – ALS - Cu


For Figure 11-18 that shows a plot of all ALS-produced pulp duplicate Au results, all data below 0.005g/t is removed while 1,787 data points remain. Au concentrations range from <DL to approx. 5g/t and correlate well between original and duplicate ($R^2=0.95$). Some 40 pairs (or approx. 2% of the population) create noticeable scatter across the grade range with a moderate bias towards the original sample. MMTS finds the results acceptable and has not reviewed the lab-internal pulp duplicates.

(Source: MMTS, 2025)

Figure 11-18 Pulp Duplicates – ALS - Cu


SGS produced 650 pulp duplicate pairs for Cu in 2008 and 2020 combined (Figure 11-19). The reproducibility at the pulp stage of size reduction at Cu grades between 0.1% and 7% is near perfect and the distribution of pulp duplicate selections across the holes drilled in those 2 years is acceptable.

(Source: MMTS, 2025)

Figure 11-19 Pulp Duplicates – SGS - Cu

All data below detection limit (0.01g/t) is removed for Au in Figure 11-20, also one high-grade outlier that reported as 17.1g/t in the original and 9.27g/t in the duplicate. 304 pairs remain that overall, and as a population demonstrate good correlation despite expected scatter at lower grades. The data does not appear to be biased.

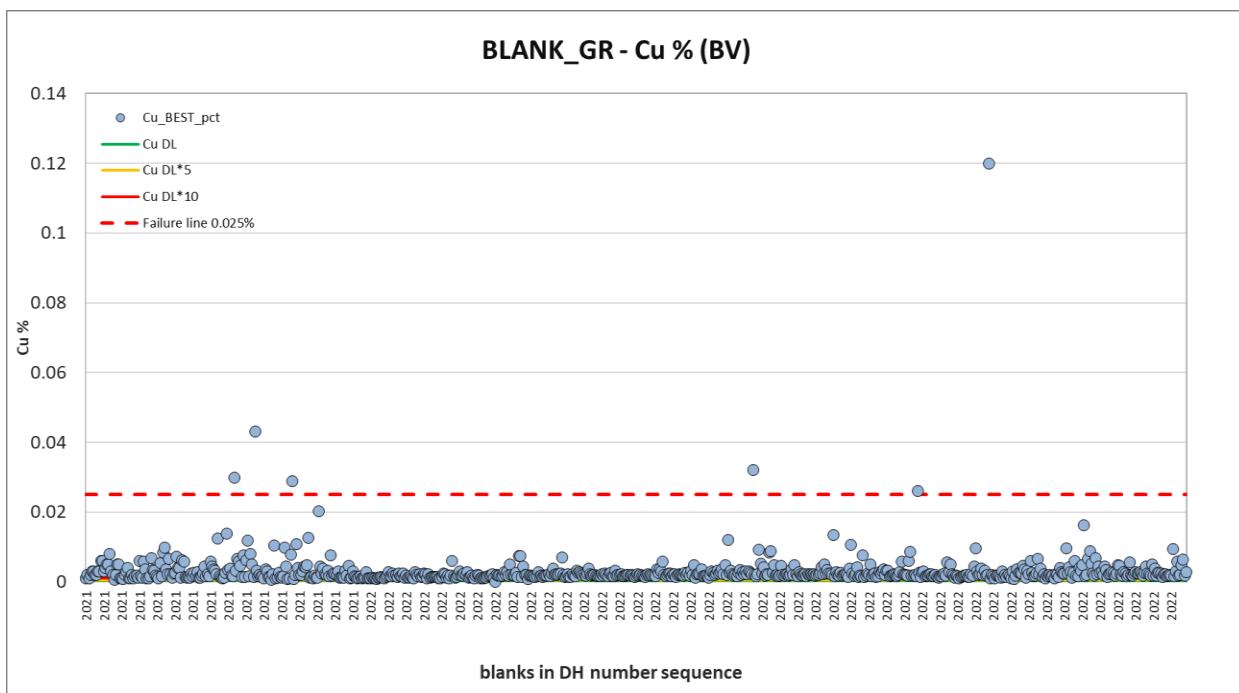
(Source: MMTS, 2025)

Figure 11-20 Pulp Duplicates – SGS - Au

In summary with regards to precision, MMTS finds the performance of both ALS and SGS acceptable.

11.7 2021-2022 QA/QC Introduction

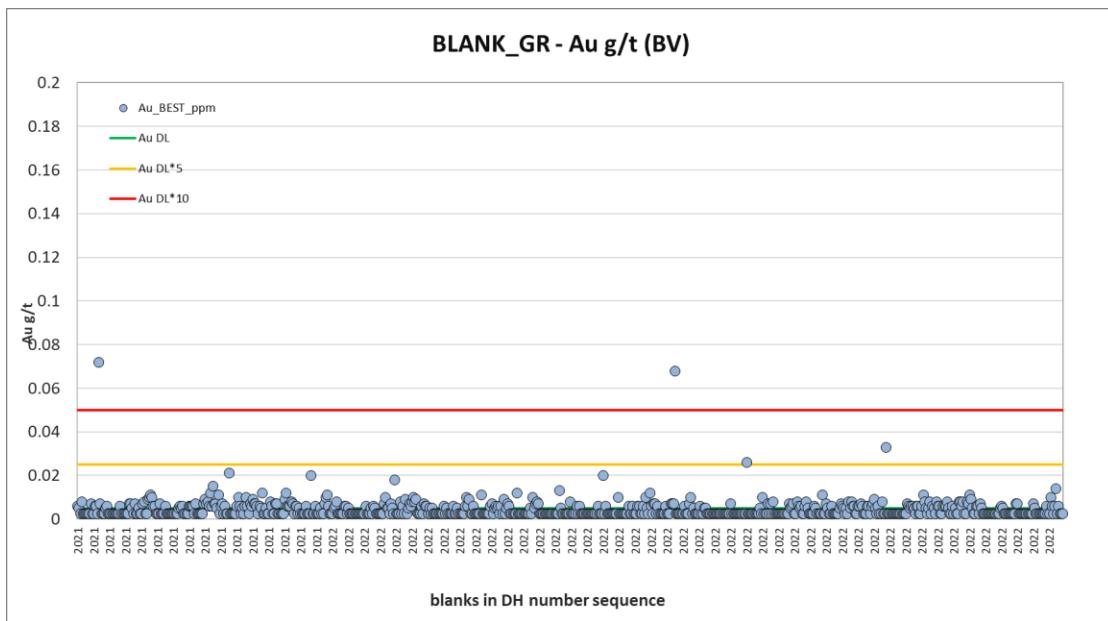
Described under Section 11.1, drill core samples taken between 2021 and 2022 were either sent to Bureau Veritas (BV) for preparation and analysis of a full suite of elements including Au or were processed on-site for analysis of Cu (and Ag depending on Cu grade) at the Minto lab next to the Minto mill.


Minto-internal QA/QC data from 2020 is also included in this chapter to generate a more comprehensive picture of the Minto on-site performance. Over 1,000 samples from under ground drill holes 20UG045 to 20UG108 as well as 20UG121 to 20UG136 were exclusively analyzed on-site in 2020, supported by 78 blanks, 74 standards, 24 coarse duplicates, and 24 pulp duplicates.

The QA/QC data presented in the following Sections 11.8-11.10 is being split into the respective labs as preparation, digestion, and analysis can differ slightly. BV is a fully certified laboratory while the Minto on-site facilities are not.

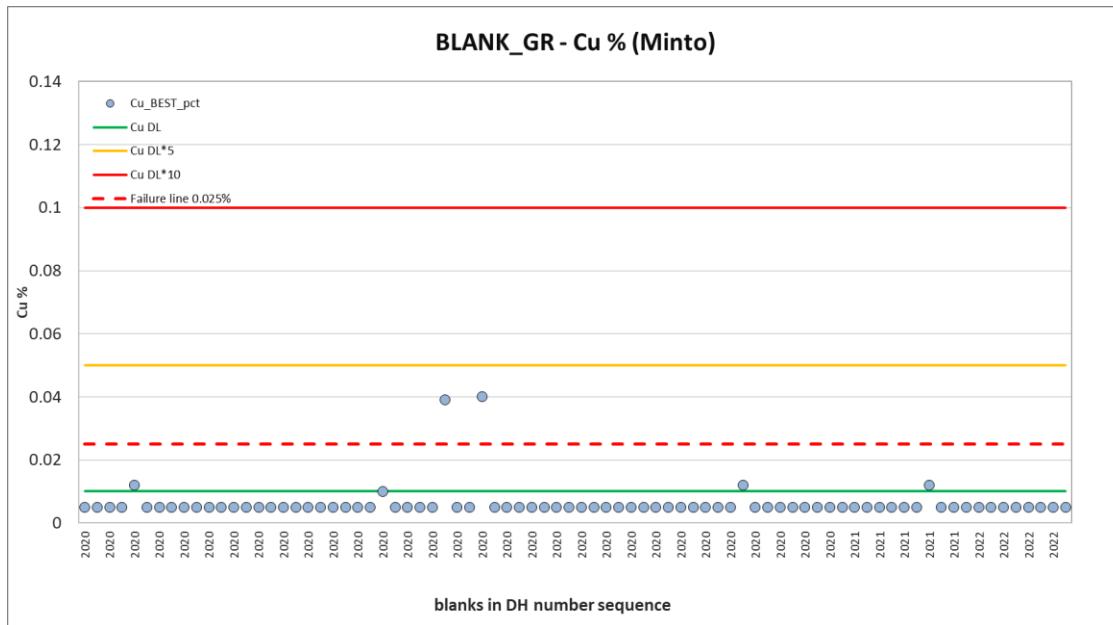
11.8 2021-2022 Blanks

The same coarse granodiorite blank as described under section 11.3 was inserted into the sample streams of 2020 to 2022. The previously used 0.025% warning line is being maintained in Figure 11-21 even though the natural background Cu concentration reports consistently much lower than that at approximately 30ppm.


Six (6) blanks exceed the theoretical failure line. MMTS spot-checked the preceding samples for Cu grade and concludes that the 'failures' are likely caused by natural variation in the blank material, not contamination.

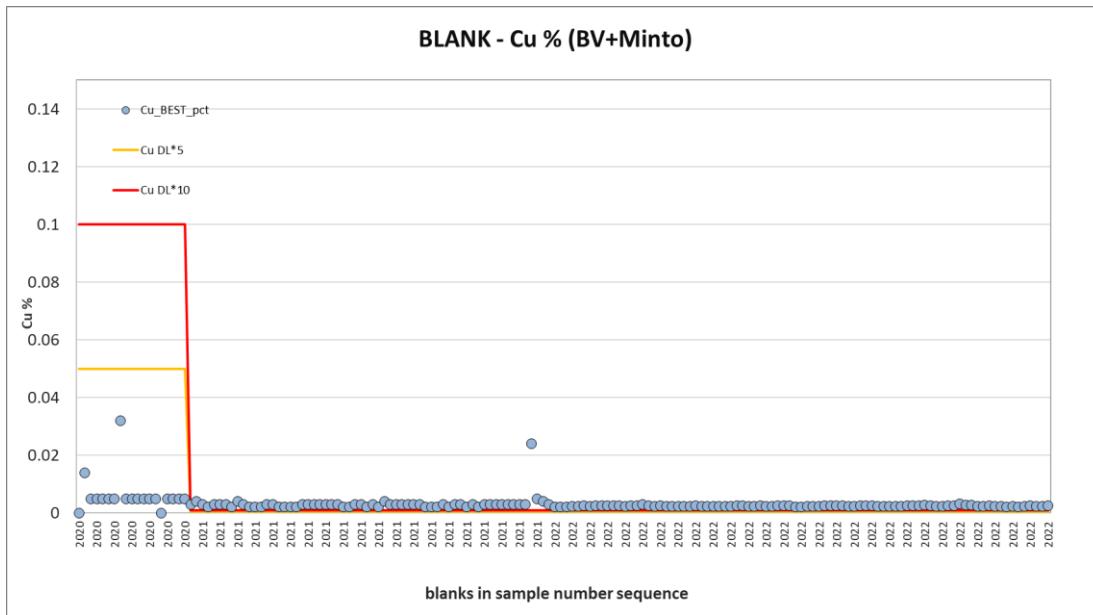
(Source: MMTS, 2025)

Figure 11-21 Blank Performance for Bureau Veritas - Cu

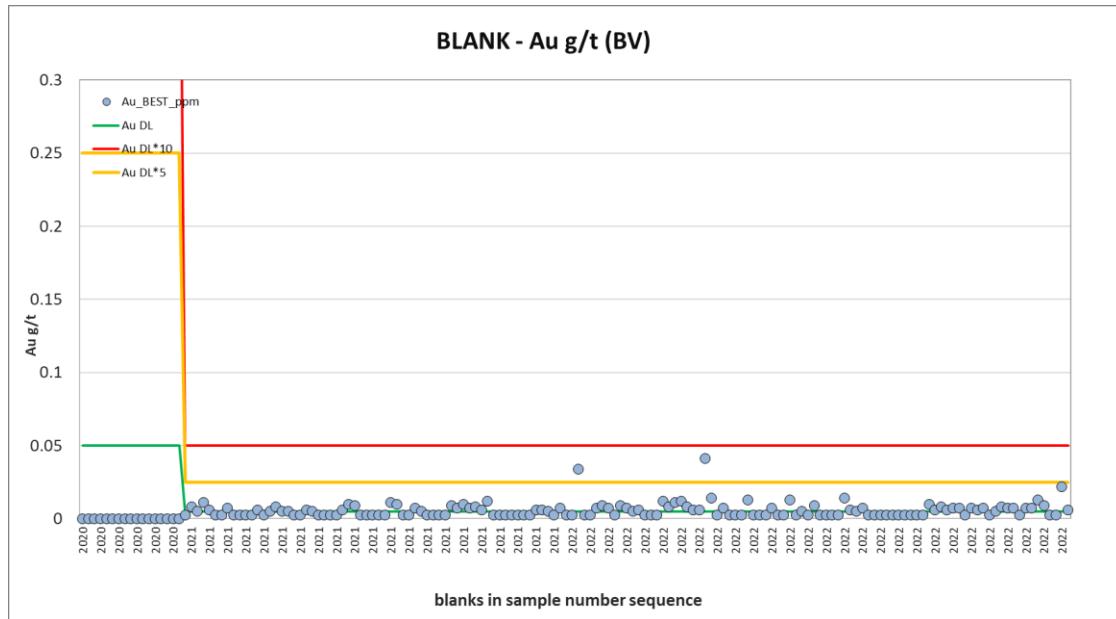

Figure 11-22 plots all 743 Au results reported by Bureau Veritas in 2021 and 2022. Only 2 blanks (or 0.27%) exceed the 10*DL failure threshold, demonstrating that cross-sample contamination during preparation at BV is not a concern.

(Source: MMTS, 2025)

Figure 11-22 Blank Performance for Bureau Veritas - Au


The blanks that were inserted into the sample stream of underground drill hole sampling in 2020 do not indicate any cross-sample contamination at the Minto on-site laboratory as shown in Figure 11-23. 74 of 80 total analyses report below detection limit of 0.01% Cu and no failures are recorded.

(Source: MMTS, 2025)


Figure 11-23 Blank Performance for the Minto On-site Lab - Cu

Results of a second blank material inserted in all 3 years is also available. MMTS does not have any detail about this blank but the very consistent Cu grade of approx. 25ppm and the equally consistent sample weight, where reported, of 120-130g indicate a purchased and likely pre-pulverized blank. Figure 11-24 and Figure 11-25 show no contamination concerns for Cu or Au (Au results from BV only).

(Source: MMTS, 2025)

Figure 11-24 Blanks from 2020-2022 - Cu

(Source: MMTS, 2025)

Figure 11-25 Blanks from 2020-2022 - Au

11.9 2021-2022 Standards

This chapter describes the performance of various inserted blind standards (STD or CRM) utilized at semi-regular intervals during drilling programs of 2020 to 2022 to control analytical accuracy of reported Cu and Au assay results. MMTS did not review the lab-internal standards since the blind insertion rates for these two years are considered suitable for quality control.

Results of 5 commercial CRMs certified for Cu among other chemical elements (COA) are available for the time frame. The expected Cu values represent the typical ore grades at Minto, however 3 of the 5 standards are not certified for Au which limits a more comprehensive assessment of the precious metal.

As in previous segments, the data is presented as 'normalized' by subtracting the expected value of the COA from the actual value as reported by the lab, then divide the result by the 'between lab' standard deviation (SD) as per COA. Warning (orange) and failure (red) lines are defined as $+/2$ and $+/3$ z-scores as shown on the Y axis while the target line (zero) where expected and actual are identical is shown in green. To highlight trend and bias, if any, a moving average line was calculated (black).

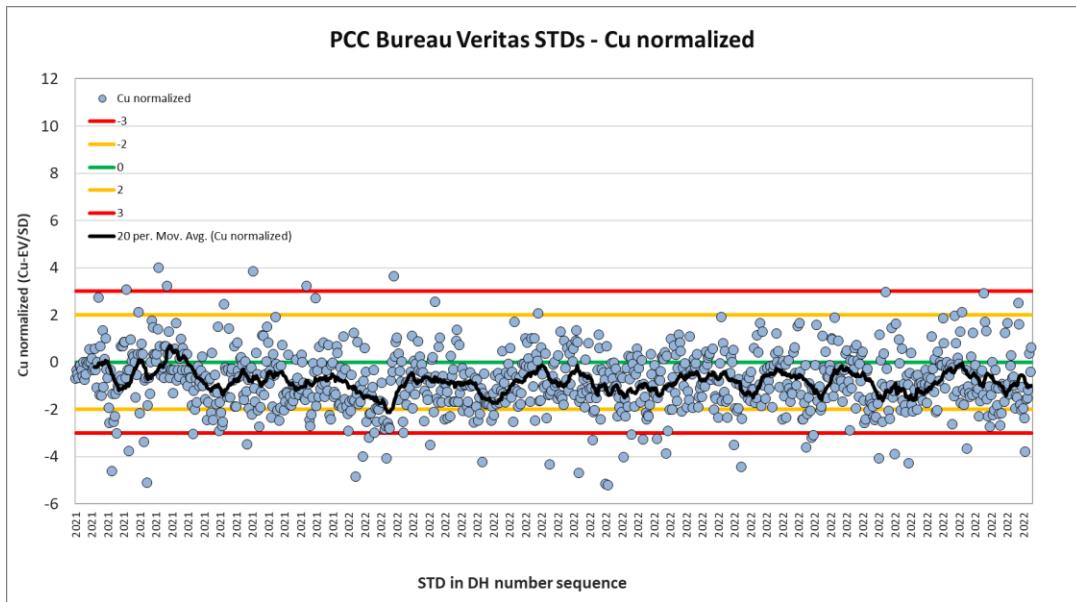

11.9.1 Bureau Veritas Cu

Table 11-8 details the performances of 5 standards in a simple statistic with insertion count and failure count. The total failure rate for Cu analyses at BV in 2021-2022 is 4.2%, with 85% of those being low failures. This is consistent with the overall weak low bias across the data, as shown by the consistently negative Cu % error, making the parts of the resource that rely on BV results somewhat conservative. MMTS finds the results acceptable.

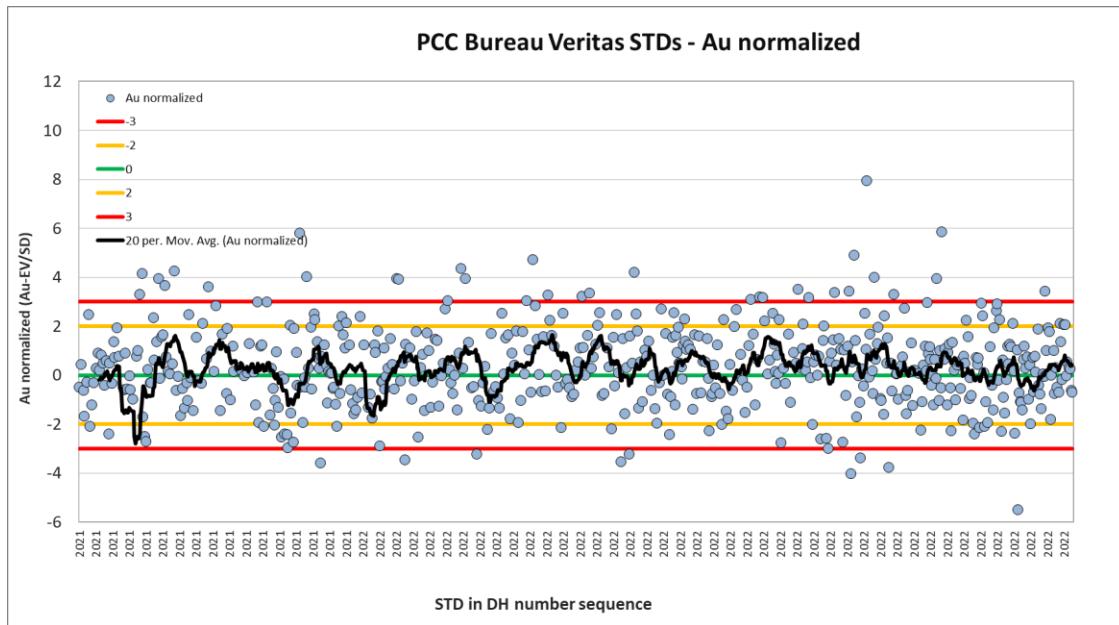
Table 11-8: Summary of Standards used from 2020-2022

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
CDN-CM-31	2021-2022	253	0.08	0.08	0.003	-2.8%	1	0	0.4%
CDN-CM-33	2022	14	0.34	0.35	0.007	-1.8%	1	0	7.1%
CDN-CM-34	2021-2022	116	0.56	0.58	0.020	-3.1%	2	0	1.7%
CDN-CM-41	2021-2022	112	1.69	1.71	0.025	-1.0%	2	1	2.7%
SM-04	2021-2022	458	3.75	3.80	0.060	-1.4%	28	5	7.2%
Total		953					34	6	4.2%

Graphing the data summarized in Table 11-8 over time confirms the low bias as the calculated 20-sample moving average predominantly plots below the zero line of perfect accuracy. The plot in Figure 11-26 contains no trends that should have triggered a re-run request to the lab nor are the failures and their distribution cause for concern.

(Source: MMTS, 2025)

Figure 11-26 Normalized Standards for Bureau Veritas - Cu


11.9.2 Bureau Veritas Au

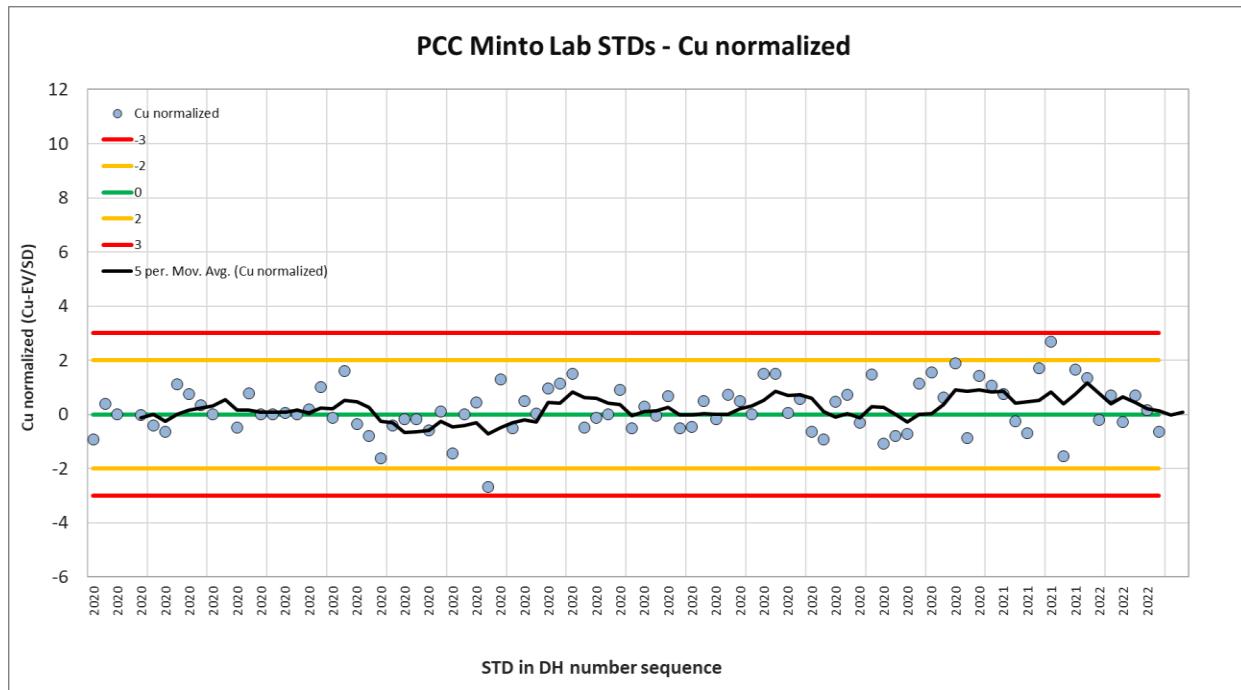
A significant number of failures (47 out of 570 analyses or 8.2%) listed in Table 11-9 indicate an overall moderate to poor accuracy for the fire assay method FA-430 at Bureau Veritas. The failures are predominantly high (72%) which causes a weak high bias in the data. Noticeable is that standard SM-04 was utilized much more frequently than CDN-CM-41 which is a function of SM-04 being used exclusively in the 2021 and 2022 exploration drill holes (21EXP001 to 22EXP059). This leads to poor grade representation (and therefore poor accuracy control) as does the fact that CDN-CM-41 has a very similar certified value of 1.6g/t Au to SM-04 (1.35g/t Au).

Table 11-9: Standards from Bureau Veritas - Au

Standard	Year	Count Au	Au g/t mean	Au g/t EV	Au g/t SD	Au % error	Au Fails Low	Au Fails High	Au Fails %
CDN-CM-41	2021-2022	112	1.61	1.60	0.075	0.6%	4	5	8.0%
SM-04	2021-2022	458	1.37	1.35	0.062	1.3%	9	29	8.3%
Total		570					13	34	8.2%

Figure 11-27 shows the performance of both standards over time, normalized as described above. The mean of the actual data is only slightly higher than expected (1.42g/t vs. 1.40 g/t or +1.5%) which is acceptable but assisted by 4 'far low' outliers (off the scale in Figure 11-27 as they reported as <1g/t) that should have triggered re-running all or parts of the respective certificates. Overall, the data is not very precise despite its accuracy when averaged.

(Source: MMTS, 2025)


Figure 11-27 Normalized Standards for Bureau Veritas - Au

11.9.3 Minto Cu

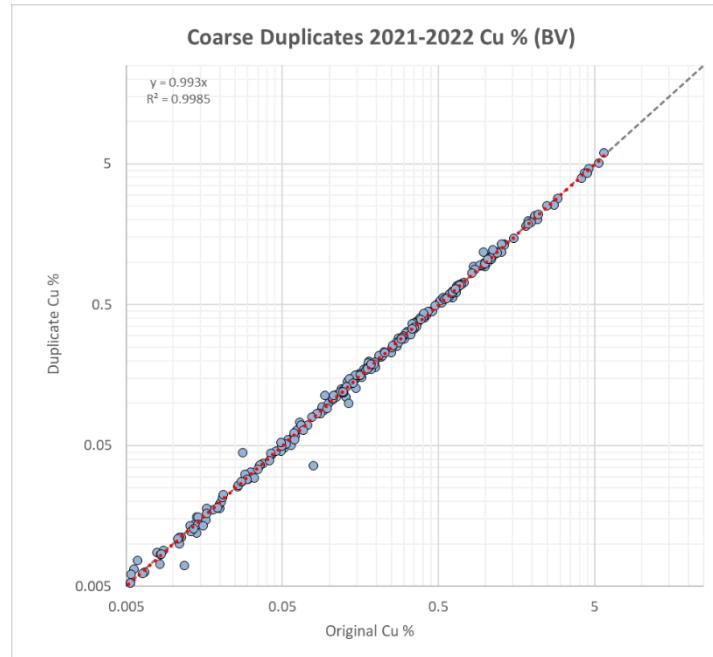
6 different (blind) standards were inserted into the sample stream to control accuracy of assay results in addition to the customary Minto on-site lab's internal QA/QC protocols of blanks and standards per batch as summarized in Table 11-10 and plotted in Figure 11-28. Expected values (EV) of the standards range from 0.08% to 3.8% Cu. No failures are recorded and the overall error (%) is acceptably small and without obvious bias.

Table 11-10: Summary of Standards for Minto On-site Lab

Standard	Year	Count Cu	Cu % mean	Cu % EV	Cu % SD	Cu % error	Cu Fails Low	Cu Fails High	Cu Fails %
CDN-CM-27	2020	1	0.60	0.59	0.015	1.7%	0	0	0.0%
CDN-CM-31	2020-2021	2	0.08	0.08	0.003	-2.4%	0	0	0.0%
CDN-CM-34	2021-2022	3	0.59	0.58	0.020	1.8%	0	0	0.0%
CDN-CM-36	2020	10	0.23	0.23	0.005	-0.4%	0	0	0.0%
CDN-CM-41	2021-2022	2	1.70	1.71	0.025	-0.6%	0	0	0.0%
SM-04	2020-2021	70	3.82	3.80	0.060	0.4%	0	0	0.0%
Total		88					0	0	0.0%

(Source: MMTS, 2025)

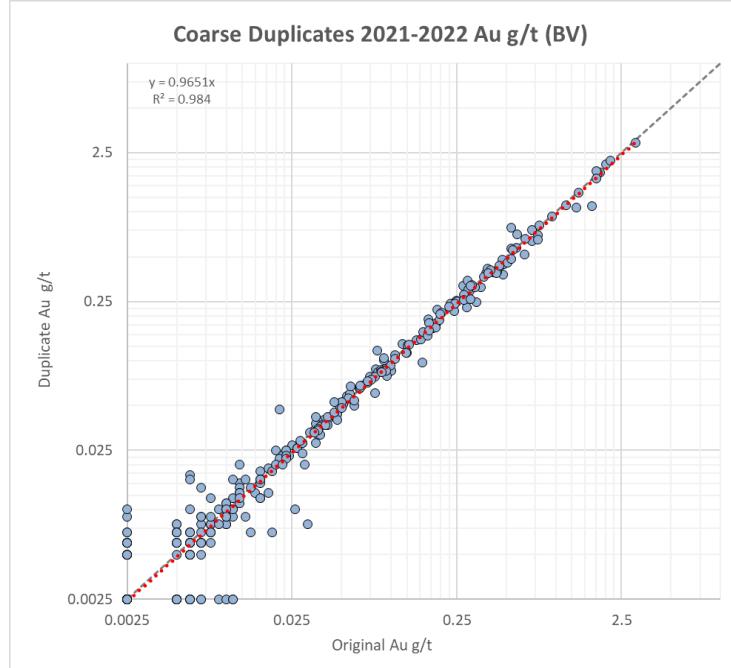
Figure 11-28 Normalized Standards for Minto lab - Cu


MMTS has no significant accuracy concerns but recommends using CRMs that are certified for Cu, Au, and Ag and represent the common grade ranges at Minto better in future drilling campaigns.

11.10 2021-2022 Duplicates

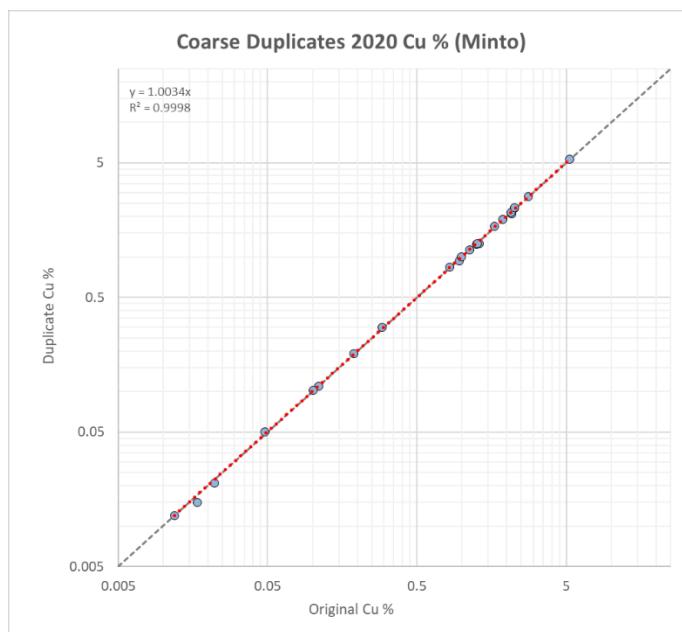
Field duplicates are not available for 2021-2022. 2020 field duplicates are discussed in Section 11.6.1.

11.10.1 Coarse Duplicates


All available coarse duplicate data show very good correlation to the respective coarse original data, as illustrated in Figure 11-29 proving very good reproducibility at the crushing and splitting stage at Bureau Veritas and indicating negligible error during further size reduction and analysis. Cu grades range from DL to +5% Cu. Split weights are not being reported in BV assay certificates. Very few of the 402 coarse duplicate sample pairs plot away significantly from the 1-1 centre line shown in Figure 11-29.

(Source: MMTS, 2025)

Figure 11-29 Coarse Duplicates for 2021-2022 - Cu


Figure 11-30 illustrates the very good performance of coarse duplicate pair Au assays at BV in 2021 and 2022 (398 pairs). Except for minor data scatter at very low grades, which is expected, the data correlates across the full range of Au up to approx. 3g/t ($R^2=0.98$). The data is without bias.

(Source: MMTS, 2025)

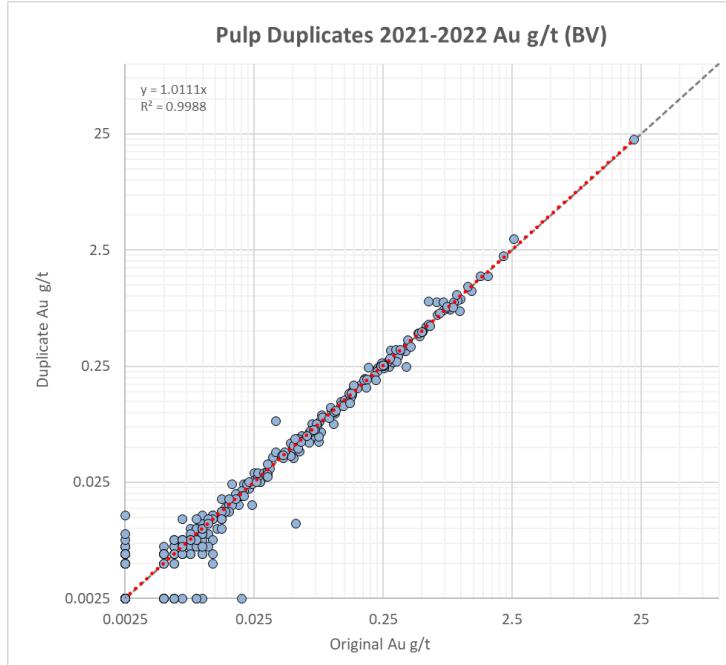
Figure 11-30 Coarse Duplicates for 2021-2022 - Au

24 Cu data points are available for coarse duplicates produced and analyzed at the Minto on-site lab in 2020, none for 2021 or 2022. Figure 11-31 demonstrates the near perfect repeatability and acceptable representation across the grade range despite the small population.

(Source: MMTS, 2025)

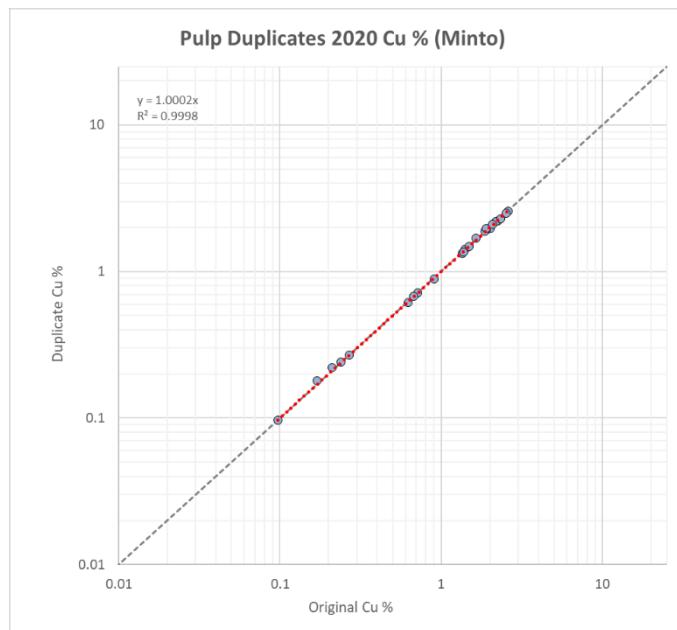
Figure 11-31 Coarse Duplicates for the Minto Lab from 2020 - Cu

11.10.2 Pulp Duplicates


A total of 393 pulp duplicates were generated at BV in 2021-2022 and inserted within more than 15,000 core samples and their analyses (2.6% insertion rate), all of which were analyzed for Cu and 391 for Au. They cover a grade range of DL to 5% Cu and effectively 25g/t Au. Figure 11-32 shows the excellent correlation between original and duplicate pulps ($R^2=1$) for Cu.

(Source: MMTS, 2025)

Figure 11-32 Coarse Duplicates for Bureau Veritas from 2021-2022 - Cu


Figure 11-33 demonstrates the near perfect correlation between original and duplicate with respect to Au.

(Source: MMTS, 2025)

Figure 11-33 Coarse Duplicates for Bureau Veritas from 2021-2022 - Au

As with the coarse duplicates, only 24 pulp duplicates are available for 2020 (none for 2021-2022) so the control of the analytical precision at the Minto on-site lab is somewhat limited. The existing data however plots to near perfect correlation (Figure 11-34) without bias and with good grade representation from 0.1% to almost 3% Cu.

(Source: MMTS, 2025)

Figure 11-34 Pulp Duplicates for Minto lav from 2020 - Cu

In summary, results of the various duplicate control samples at Minto and Bureau Veritas prove very good reproducibility. Given the long history of the mine and the enormous amount of QA/QC data available, MMTS has no concerns about the lack of field duplicates for 2020-2022 or the limited amount of coarse and pulp duplicates in the Minto on-site dataset.

11.11 QAQC Conclusions and Recommendations

The QP concludes that the sample preparation, analyses ad security for the assay data collected and used for the mineral resource estimate is of sufficient quality or has been verified. The QP recommends the following:

1. The use of certified reference materials (CRMs) for Cu, Au, and Ag chosen to represent all expected grade ranges.
2. The analysis of the small sample set of field duplicates in Minto East implies potential significant low bias to the gold samples in the assay database. It is suggested that Minto investigate this finding with re-assay of core and check assays.
3. CRM and check assay results from 2019 and 2020 indicate that there may be a negative bias to silver values. It is recommended to continue to monitor this potential bias.

4. There is a possible high bias in the copper results from 2009 through 2011 indicated by the CRM results. It is recommended further check assays of pulps and quarter-core samples be conducted to investigate.

12.0 Data Verification

12.1 Site Visit

Sue Bird, P. Eng. of MMTS visited the Minto mine site from February 2nd through February 5th, 2021 for three days, and again on October 9th 2024 for one day. During the 2021 site visit the core sample storage, preparation and security was discussed and viewed. Mineralization and geology were discussed with the site geologists, with the rock library and representative core made available. The insertion of standards, duplicates, and blanks was confirmed, as was the protocol for handling of failures. The general mine site was toured, and drillhole locations underground have been verified where possible. The geology and mineralization and ore/waste contacts were also observed during the underground tour. The Processing Plant was toured and the metallurgical recovery and blending of Partially Oxidized material (POX) discussed. During the 2024 site visit the mine was shut down. The property was toured with several collar locations verified and three samples collected for re-assay checks. Results of these three samples were not ideal, with values appearing to contain outliers for Cu or Au, making plots for these elements not useful. Table 12-1 summarized the results illustrating re-assays results for Cu are 6.5% lower due primarily to Sample #2, with Ag results comparable and Au results 7.8% higher, also due largely to Sample #2.

Table 12-1: Summary of 2024 Re-sampling of three Samples

Sample #	ORIGINAL			RE-ASSAY			Difference			% Difference		
	Cu (%)	Ag (g/t)	Au (g/t)	Cu (%)	Ag (g/t)	Au (g/t)	Cu (%)	Ag (g/t)	Au (g/t)	Cu	Ag	Au
1	2.395	8.7	2.247	3.800	11.5	2.43	1.405	2.8	0.183	58.7%	32.2%	8.1%
2	1.891	10.8	1.185	0.300	9.7	1.36	-1.591	-1.1	0.175	-84.1%	-10.2%	14.8%
3	1.273	7.7	1.053	1.100	6.4	1.05	-0.173	-1.3	-0.003	-13.6%	-16.9%	-0.3%
All	1.843	9.0	1.488	1.723	9.2	1.604	-0.121	0.1	0.116	-6.5%	1.2%	7.8%

12.2 Data Audit

MMTS has been provided with two databases, the resource database and the QAQC database, exported from the main assay database which includes imports of all available historic databases and certificates.

The resource database provided to MMTS was reviewed for accuracy against historic drill logs for drilling prior to 2005 and laboratory certificates for drilling in 2005 and later, or when available. Prior to resource modeling, systematic findings were identified and corrected as appropriate involving both historic data and 2005 and later. After resource modelling, 213 findings in the post 2005 data were discovered during routine certificate checks, and although the erroneous data was used in the resource model it is not considered material with respect to the outcome of this study. A summary of findings enumerated by area follows this discussion.

MMTS reviewed all available drill logs to verify the historic data and made corrections supported by drill logs or certificates. The total number of corrections prior to resource modeling affected 7,591 assay intervals.

12.3 Drill Log Checks

A series of 3,656 changes were made to assay intervals referencing historic drill logs. Most errors involved gold values and stemmed from inappropriate rounding in the database. One common error resulted in a high frequency of gold values rounded to one decimal place, which resulted in a high instance of zero and integer values for gold in g/t. Another rounding error involved data originally reported in ounces per ton (opt) to the thousandths place being rounded to the hundredths place before conversion to grams per tonne, resulting in errors of up to 0.17 g/t. An additional set of corrected errors involved a series of duplicate assays conducted in 2011 which had been given the same numbers as some historic samples and erroneously updated into the main assay database, overwriting the historic data. There were also some transcription errors affecting all three elements. Historic data that is believed to be erroneous and not correctable due to missing historic drill logs has not been used.

An additional series of 3,935 corrections was made to silver assays with results that had been erroneously exported from fire assay with gravimetric finish (FA-GRA) test results in precedence to ICP or other test results when the assay value detected at the ICP test was less than the detection limit of the gravimetric test. These assay intervals were changed using the 2008 database provided by Minto and spot checked to confirm accuracy.

12.4 Certificate Checks

A total of 8,509 assay sample values were checked for Cu, Ag and Au against certificate values, comprising 7.6% of the 111,748 non-historic assays in the database. These samples were selected exclusively from the 863 certificates that include samples in the mineralized domains. The checked samples came from 459 of these certificates, meaning that 53% of certificates with samples in mineralized domains were considered. The checks are not random, as potential errors could be identified by sorting in increments of detection limits, or assays near or above over limits, and all of these potential errors were investigated.

Multiple findings were discovered and appear to result from the main database import and export issues. These findings do not affect copper assays and fall into three broad categories relating to:

- Silver assays with incorrectly reported below detection limit values or inappropriately exporting gravimetric test results in preference to ICP;
- Gold assays reported as 10 g/t, when the initial test result on the certificate is >10 g/t and there is an overlimit value on the certificate which is not exported from the database; and
- Importing data from more than one certificate but only providing one certificate number for checks which does not include all the recorded assay values, meaning that assay values for silver or gold cannot be verified by certificate checks.

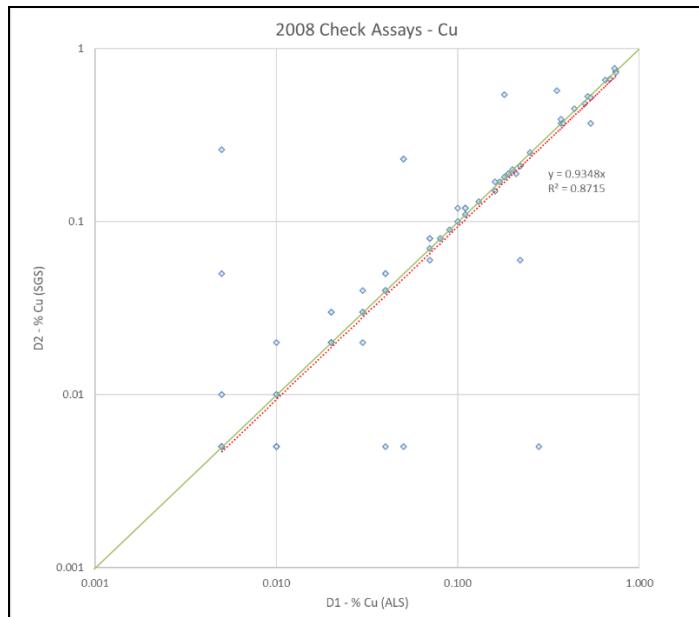
A total of 213 errors were identified post modeling, affecting silver and gold, as described above, in 2.5% of intervals checked. The 2.5% rate should not be extrapolated to the entire database because of the non-random nature of the checks.

Not all certificates are available. MintoEx made multiple attempts to obtain copies of missing certificates, however the laboratories were not able to produce all requested certificates. The assay

database was flagged to identify errors not corrected before modeling and missing certificates or drill logs in support of resource classification.

The total number of assays intervals and the results of auditing by MMTS is presented by area in Table 12-2.

Table 12-2: Summary of Data Audit by Area


Area	Years	Intervals in Resource Database	Intervals Presented Without Issue	Pre-Modeling Correction	Used Subject to Validation	Known Errors Not Used	Post-Modeling Correction	Missing Certificate or Drill Log
Copper Keel, Ridgetop and 119	1971-2001	1,925	0	1,925	0	0	0	0
	2005-2020	79,965	75,828	1,704	0	0	181	2,252
	Total	81,890	75,828	3,629	0	0	181	2,252
Minto East	1971-2001	4,365	0	1,770	2,242	353	0	2,595
	2005-2020	20,846	18,720	2,107	0	0	19	425
	Total	25,211	18,720	3,877	2,242	353	19	3,020
Minto North	1971-2001	47	0	14	33	0	0	33
	2005-2020	6,942	6,931	0	0	0	11	0
	Total	6,989	6,931	14	33	0	11	33

12.5 Check Assays

MintoEx has provided MMTS with data and certificates of check assays from drilling in years 2008, 2011-2012 and 2020. In addition, the assay database includes check assays from drilling in years 2005, 2007 and 2010. However, no certificates are available from these check assays and hence, they are not considered here.

12.5.1 2008 SGS Check Assays

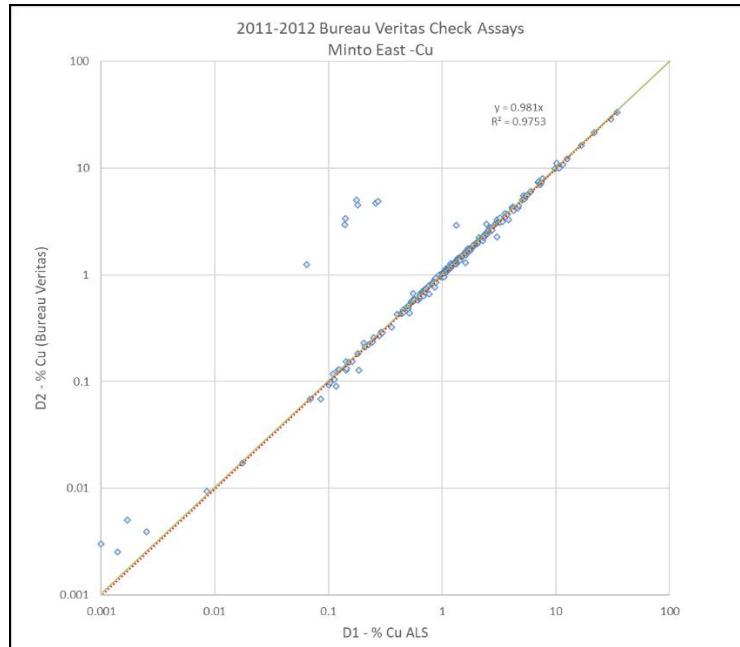
A set of 168 samples from hole 08SWC270 in the main Minto pit that has been mined out, with original assays by ALS-Chemex in April 2008, were assayed at SGS in August 2008. The scatter plot of duplicate pairs is given in (Source: MMTS, 2021) Figure 12-1 and shows a slight bias with the linear regression having a slope below 1 and a lower R-squared value of 0.8715. Analysis of the paired data also show 85% with less than 10% Half Absolute Relative Difference (HARD) which is less than the expected 90% for pulp duplicates.

(Source: MMTS, 2021)

Figure 12-1 2008 Check Assays – Cu

Results for gold are not presented as 97% of assays have grades below 0.25 g/t and are therefore not very applicable. Results for silver are similarly not presented as the maximum grade of the ALS results is 3.8 g/t with detection limit of 0.2 g/t, and the SGS test has a detection limit of 1 g/t, resulting in all SGS values being 0.5, 1, 2 or 3 g/t, making paired comparison inappropriate.

12.5.2 2011-2012 Bureau Veritas Check Assays

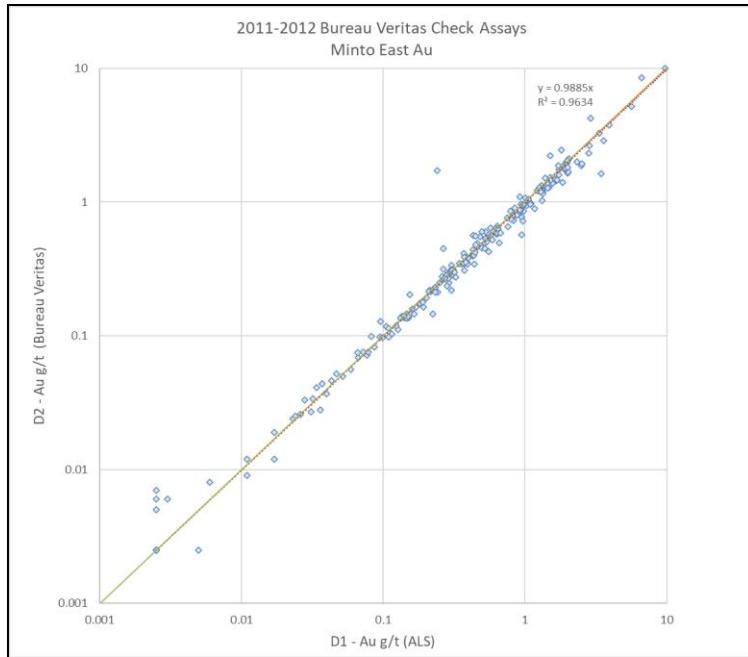

The QAQC duplicates database includes a set of 479 duplicates with initial assays at the primary lab, ALS, and check assays performed on pulps submitted to the Bureau Veritas lab in Richmond, BC, with 31 pairs in Minto North and the remainder nearly equally split between Minto East and Copper Keel, Ridgetop and 118. The analyses of the pairs are presented by area in Table 12-3 and show slopes close to 1:1 and reasonable R-Squared values for the linear regressions. The criteria for pulp duplicates are that 90% of pairs have less than 10% HARD, which is only met for copper in Minto East and Minto North samples and silver in Minto North. However, the other pairs are reasonable with respect to the mineralogy at Minto.

The results for Copper Keel, Ridgetop and 118 indicate the ALS results are somewhat higher than the BV results for copper and gold.

Table 12-3: Bureau Veritas Check Assays 2011-2012 Results by Area

Area	Sample Pairs	Element	% less than 10% HARD	LR Slope	LR R-Squared
Copper Keel, Ridgetop and 118	223	Cu	87%	0.950	0.9520
		Au	72%	0.966	0.8955
		Ag	65%	1.043	0.9834
Minto East	225	Cu	91%	0.981	0.9753
		Au	85%	0.989	0.9634
		Ag	75%	1.046	0.9963
Minto North	31	Cu	95%	0.999	0.9987
		Au	73%	0.972	0.9729
		Ag	91%	1.08	0.9979

The scatter plot of 225 duplicate pairs for copper in Minto East is presented in (Source: MMTS, 2021) Figure 12-2 and shows acceptable results with a few outliers.



(Source: MMTS, 2021)

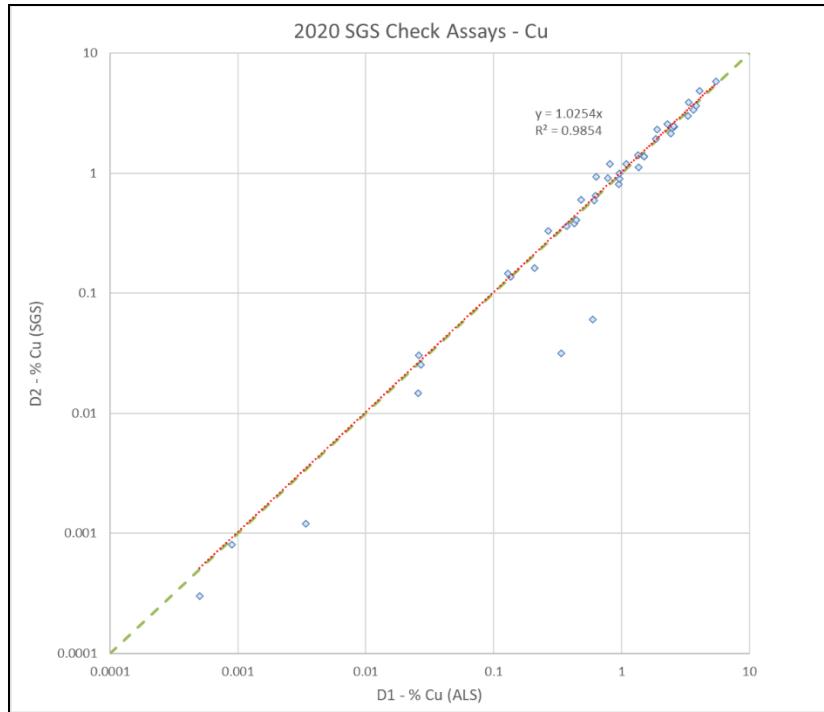
Figure 12-2 Scatter Plot 2011-2012 Bureau Veritas Check Assays - Copper in Minto East

The scatter plot for gold in Minto East is given in (Source: MMTS, 2021)

Figure 12-3 with one outlier removed and shows good agreement to a 1:1 slope and acceptable R-Squared value.

(Source: MMTS, 2021)

Figure 12-3 Scatter Plot 2011-2012 Bureau Veritas Check Assays - Gold in Minto East


12.5.3 2020 SGS Check Assays

Minto had experienced a high failure rate of blanks at the primary laboratory, ALS, and submitted a batch of 70 samples total to include 43 quarter core samples from the affected intervals, and QAQC samples. A total of 10 different ALS certificates were affected, from 10 different holes, one hole in Minto North, and the remainder are in Copper Keel, Ridgetop and 118. The results of the 42 quarter-core duplicate analysis are presented in Table 12-4 and show that the results for copper and gold are acceptable with respect to the slope of the best fit line, R-squared values and % less than 10% HARD. There are two outliers for gold removed from this analysis. The results for silver give a higher than 1 best fit slope, even when the results are filtered to exclude the samples below detection limit. The SGS ICP test has a lower detection limit of 2 g/t for Ag while the ALS test reports to 0.2 g/t. The higher trend of the silver SGS results is not of great concern at the moment but is something that should be monitored.

Table 12-4: SGS Check Assay 2020 Results

Metal	% less than 10% HARD	LR Slope	LR R-Squared
Cu	78%	1.025	0.9854
Au	65%	1.009	0.9381
Ag	52%	1.166	0.9832

The scatter plot of copper assay values from duplicate pairs by ALS and SGS are presented in (Source: MMTS, 2021) Figure 12-4.

(Source: MMTS, 2021)

Figure 12-4 SGS Check Assays 2020 - Copper

12.6 Conclusions and Recommendations

MMTS concludes and recommends the following from the data verification analyses:

1. Further attention must be paid to the importing and exporting of assays from the main database for the purpose of resource modeling as described in Section 12.1 to ensure that the most appropriate test result is exported with respect to the assay value and range of test detection limits;
2. It is recommended that Minto correct the data in the main assay database to reflect the corrections made by MMTS to the resource database. These corrections have been made available to Minto; and
3. Check assays results from 2019 and 2020 indicate that there may be a negative bias to silver values. It is recommended to continue to monitor this potential bias.

The QP concludes that the assay database is acceptable for resource estimation.

13.0 Mineral Processing and Metallurgical Testing

13.1 Introduction

The processing plant at the Minto Mine was constructed in 2006-2007 and commercial production was declared in October 2007 after a four-month commissioning period. The processing plant ran continuously until it was placed on care and maintenance in October 2018, following discontinuation of mining operations. The plant was down for approximately 1 year before the recommissioning of milling facilities commenced in September 2019, with the resumption of processing mineralized material in October 2019. The processing plant ran continuously until Minto Metals filed for bankruptcy in May 2023.

13.2 Historical Metallurgical Testwork

Over the years, many metallurgical testing programs on the Minto mineralized material have been undertaken. In addition, many plant trials have been conducted. These have been used to optimize circuit performance and provide guidelines for operating the plant and making equipment modifications. In addition to on site testing, there has been a significant amount of work by outside organizations. The testwork completed during construction and early commissioning are summarized in Table 13-1.

Table 13-1: Summary of Metallurgical Testwork

Orebody	Samples	Summary Comments
Minto North	83 samples of quarter core combined to form a single master composite.	KM 2420 testwork report completed by G&T in June 2009. Rougher flotation kinetics completed with Paos of 156 to 273 μm . A single locked cycle test was completed to assess the effect of cleaner recirculation loads.
Ridgetop, Area 118	A master composite generated representing upper and lower zones of each orebody. In addition, 12 variability samples per orebody.	KM 2351 testwork report completed by G&T in May 2009. At a primary grind size of 200 μm two-dimensional copper sulfide liberation was 55 to 65% for Area 118 and Ridgetop. No sensitivity to primary grind size up to 250 μm for Area 118 and 200 μm for Ridgetop.
Area 2	A master composite was derived for zones L, M, N, O, P and Q from the individual samples.	KM 1966 testwork report completed by G&T in June 2007. Variability tests completed at various grind sizes. Gold recovery was lower for the coarse primary grind sizes. Regrind size of 100 μm for the rougher/scavenger concentrate was tested. Locked cycle test indicated a drop in final concentrate grade of 3% for the same overall recovery when the regrind state was removed.
Minto Main Phases I, II and IV composites	Three composites for phase I, II and IV tested.	KM 1867 testwork report completed by G&T October 2006. Effect of primary grind size investigated on the Phase I composite. Copper recovery was not sensitive to

Orebody	Samples	Summary Comments
		coarser grind however gold recovery traduced by 5 - 10% with greater than 200 μm primary grind.
Minto Main	2 composites based on 23 core samples.	KM 1810 testwork report completed by G&T in April 2006. Report recommends primary grind size greater than 150 μm and a regrind of 60 μm for the rougher/scavenger concentrate.
Minto Main		KM 1742 testwork report completed by G&T in November 2005. Single test completed with a primary grind size of 281 μm . Not sufficient data for determining the effect of coarser primary grind sizes on overall recovery.
Minto Main (South)	Two composite samples less oxidized than samples in KM 1937 testwork campaign.	KM 2024 testwork report completed by G&T in August 2007. The flotation response was considerably more variable to increased grind sizes in comparison to the Minto Main Pit ore testwork.
Minto Main (South) Partially Oxidized	Composite sample generated for Minto Main (South) pit ore.	KM 1937 testwork report completed by G&T in April 2007. Sample contained 20% non-sulfide copper as compared to 8% for non- partially oxidized Minto Main (South) ore for testwork campaign KM 2024. Addition of a sulfidizing agent improved overall copper recovery by 2 -4%.
Minto North	Minto North composite sample.	KM 1937 testwork report completed by G&T in March 2007. Varied primary and regrind sizes tested. Copper recovery was not sensitive to primary grind size however gold recovery reduced by 3% at 270 μm grind size. The optimum copper concentrate grade and recovery occurred with a rougher/scavenger concentrate regrind size of 79 μm .

Source: SRK (2009)

The mineralized material at the Minto Mine is normally a combination of chalcopyrite and bornite with minor amounts of chalcocite. Typically, pyrite is a minor constituent of the mineralized material and therefore the cleaner circuit relies on dilution cleaning and no pyrite depression is utilized. Table 13-2 summarizes the operations data from 2010 to 2020. The data was gathered from year end MD&A reports by Capstone for the years 2010 to 2018, except for the oxide copper grade and oxide ratio, which were composited from the daily production reports. It should also be noted that the gold produced value for 2018 is a calculation using the tonnes processed, feed grade and stated gold recovery.

The production data for 2019 to 2020 was collected from operating data, verified by the site personnel. The restart in 2019 was conducted by MintoEx which is currently owned by a private company and so the information was not released publicly.

Table 13-2: Historical Copper and Gold Recoveries and Concentrate Grades

Year	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Mill Feed Tonnes(k DMT)	915	1258	1342	1402	1439	1388	1491	1439	907	105	629	903	878	288
Feed Grade (% Cu)	2.22	1.52	1.34	1.31	1.37	1.38	2.21	1.37	1.31	2.26	1.33	1.38	1.40	1.58
Feed Grade (g/t Au)	0.68	0.60	0.58	0.52	0.56	0.49	1.23	0.79	0.44	0.86	0.51	0.55	0.58	0.57
Feed Grade (g/t Ag)	8.60	6.20	5.06	4.59	4.71	4.97	8.43	4.76	4.34	5.84	4.28	5.60	5.76	4.76
Copper Mlbs Produced	41.7	37.1	35.9	37.2	40.6	36.4	69.2	36.0	23.0	4.9	17.8	26.0	28.8	7.3
Gold Produced (koz)	15.0	18.4	18.6	18.4	19.9	16.1	39.5	21.6	7.8	2.2	7.7	11.8	12.2	3.4
Silver Produced (koz)	205.2	196.1	183.5	162.3	170.9	170.5	355.2	170.8	97.9	17.9	67.5	135.4	135.9	37.7
Copper Recovery (%)	92.8	87.9	90.5	92.3	93.25	86.2	95.2	82.6	87.5	95.1	93.4	93.2	94.13	91.8
Gold Recovery (%)	81.1	75.8	74	78.4	77.5	73.6	67	59.3	61.1	76.1	74.2	74	73.9	64.8
Silver Recovery (%)	80.9	78.6	84.1	78.5	78.5	76.9	87.8	77.6	77.3	91.5	77.9	83.1	83.5	85.6
Concentrate Produced (kDMT)	46.1	46.2	43.4	46.3	50.2	45.7	70.3	37.4	27.4	6.4	22.8	31.1	34.3	8.5
Copper in Concentrate(%)	41.0	36.4	37.5	36.5	36.6	36.1	44.7	43.7	38.1	34.9	35.5	38.0	38.2	39.4
Gold in Concentrate (g/t)	10.1	12.4	13.3	12.3	12.3	11.0	17.5	18.0	8.8	10.6	10.5	11.8	11.1	13.4
Silver in Concentrate (g/t)	145.0	132.0	131.5	109.0	105.8	116.0	157.1	142.2	111.2	86.3	92.2	135.5	123.4	138.8
Tails Copper Grade (%)	0.16	0.18	0.13	0.10	0.09	0.19	0.11	0.24	0.16	0.11	0.09	0.09	0.08	0.13
Tails Gold Grade (g/t)	0.13	0.15	0.15	0.11	0.13	0.13	0.41	0.32	0.17	0.21	0.13	0.14	0.15	0.20
Tails Silver Grade (g/t)	1.64	1.33	0.80	0.99	1.01	1.15	1.03	1.07	0.99	0.50	0.95	0.95	0.95	0.68
Copper Oxide Grade		0.06	0.05	0.03	0.03	0.11	0.04	0.16	0.07	0.03	0.03		0.03	
Oxide Ratio		3.69%	3.58%	2.59%	2.10%	8.25%	1.63%	11.52%	5.36%	1.22%	1.95%		2.14%	

In 2011, tonnage increased from approximately 2,800 tpd to approximately 3,500 tpd. During this time, operations treated historically problematic stockpiles. These stockpiles contained oxidized copper minerals that is referred to as Partially Oxidized (POX). The increase in tonnage and the treatment of problematic stockpiles resulted in recovery dropping from about 95% to approximately 87%. There have been similar recovery decreases in 2015, 2017, and 2018. These decreases are also attributed to the processing of POX.

Various mill design initiatives have been pursued to enable the recovery to be improved when processing POX mineralized material. These process improvements include the use of alternate reagents such as sodium sulfide and a collector aimed at recovering oxide minerals, AM 28.

Copper grades in the final copper concentrate at Minto are relatively high, due to the presence of bornite in the feed, which has a higher proportion of copper. Copper grades in the final copper concentrate typically ranged from 35% to 41%, but have been as high as 44.7% in 2016, which also

happened to be the year with the highest copper and gold produced at the Minto Mine. It should be noted that since chalcopyrite is typically the most important copper mineral for extraction purposes, sulfide copper concentrate grades are typically in the range of 25 – 30% Cu. Copper recoveries, to final copper concentrates, ranged from 82.6% to 95.2% in the years 2010 to 2020. The main cause of the variable recovery is believed to be related to POX zones.

There are currently 10 deposits that make up the known mineralized material at the Minto Mine. These deposits are:

- Copper Keel Main
- Copper Keel North
- Copper Keel West
- Copper Keel South
- Ridgetop
- Minto North
- Minto North 2
- Minto East 2
- A2 and
- 118

Of these deposits, the Copper Keel Main, Minto North, A2 and 118 have been mined in the past. Ridgetop presents a significant challenge due to high percentage of oxide copper in this deposit.

13.3 2021 Recovery Formula

In the 2021 PEA Technical report, the previous metallurgy QP analyzed operating data for October 2019 to January 2021 to develop recovery formulae for copper and silver. The gold recovery formula was provided by Minto Mine personnel due to the lack of gold data in the daily metallurgical database. The copper recovery formula was based on total copper grade and the ratio of oxide copper to total copper. The data examined included oxide ratios from zero to fifteen percent. When the formula was compared to previous operating data, it held up well up to a 30% oxide ratio, but is untested above that (there is not enough data to verify the formula above this). It is important to comment that the formula tends to underpredict recovery when the oxide ratio is above 30%, but the available data is insufficient to include. The formula developed was:

$$\text{Copper Recovery (\%)} = 95.5 + 1.07 * (\text{Cu}_{\text{tot}} \%) - 113 * (\text{Oxide Ratio})$$

Where:

$\text{Cu}_{\text{tot}}\%$ is total copper grade in percent (2% = 2)

Oxide ratio is the ratio of oxide copper (in percent) to total copper (in percent)

In cases where there is low oxide ratio and higher total copper grades, the recovery formula is capped at 98%.

The data analyzed suggested that the silver recovery formula was based solely on the silver grade in grams per tonne without an oxide modifier. The silver recovery formula is also capped, this time at 85%.

$\text{Silver Recovery (\%)} = 69.4 + (1.9 * \text{Silver Grade})$

The gold recovery formula, based on the gold assay in grams per tonne is:

$$\text{Gold Recovery (\%)} = 62.01 + (20.99 * \text{Gold Grade})$$

13.4 Validation of 2021 Recovery Formulas

13.4.1 Copper Recovery Formula

The 2021 copper recovery formula predictions were compared to Jan 2022 – April 2023 daily operational data and 2022 annual operation data for validation. The predictions were found to be within the range of the daily operational data and when aggregated over the year, were slightly lower than the 2022 annual actual copper production.

13.4.2 Silver Recovery Formula

The 2021 silver recovery formula predictions were compared to Jan 2022 – April 2023 monthly reconciliation operational data for validation. The recovery formula was good predictor of silver recovery, except for April and May 2022 where actual silver recovery was much higher than predicted, for no apparent reason.

13.4.3 Gold Recovery Formula

The 2021 gold recovery formula predictions were compared to Jan 2022 – April 2023 monthly reconciliation operational data for validation **Error! Reference source not found.Error! Reference source not found.** The recovery formula was good predictor of gold recovery, except for March, April and May 2022 where actual gold recovery was much higher than predicted, for no apparent reason.

13.5 2022-2023 Concentrate Grades

Concentrate grades since 2010 have been ranging from 35%-45% copper, as presented above in Table 13-2. Analysis Jan 2022 – April 2023 bi-weekly operational data shows that concentrate grade generally fluctuated with feed grade, as is typical. Concentrate grade ranged from mid 30% to mid 40% which is generally high and is an attractive concentrate to smelters.

13.6 Metallurgical Assumptions

The assumptions for metallurgical recoveries and concentrate grades are based on the recovery formulas discussed in Section 13.3. The concentrate grades used were 35% Copper which is the current concentrate grade target for the operation. The values can be found in

Table 13-3.

Table 13-3: Recovery and Concentrate Grade Estimates

Parameter	Unit	Concentrates Zone 1
Cu Recovery	%	$95.5 + (1.07 * \text{Cu tot \%}) - (113 * \text{Oxide Ratio})$
Au Recovery	%	$62.01 * (20.99 * \text{g/t Au})$
Ag Recovery	%	$69.4 + (1.9 * \text{g/t Ag})$
Concentrate Grade		
Cu	%	35

14.0 Mineral Resource Estimate

The total Mineral Resource Estimate (MRE) for the Minto deposit with an effective date of January 22, 2025, is listed in Table 14-1. The MRE by area classed as Indicated and Inferred is summarized in Table 14-2 and Table 14-3 respectively.

Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. Mineral Resources were estimated using the 2019 CIM Best Practice Guidelines and are reported using the 2014 CIM Definition Standards.

Inverse distance squared (ID^2) has been used for Cu, Au and Ag estimation with capping and outlier restriction implemented to reduce the effect of high-grade outliers and reduce the coefficient of variation (C.V.). The base case cut-off grade within the “reasonable prospects of eventual economic extraction” constraining pit is an NSR of CA\$30/t and for underground of CA\$80/t.

Table 14-1: Minto Mineral Resource Estimate – Total Open Pit and Underground

Type	Cutoff (CDN\$)	Class	ROM	In situ Grades						Metal		
			Tonnage (000)	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (Mlbs)	Au (Koz)	Ag (Koz)
Open Pit	\$30	Indicated	6,085	\$89.11	0.897	0.274	2.9	0.15	0.163	120.3	53.7	560.4
		Inferred	9,496	\$73.71	0.702	0.162	2.4	0.07	0.057	146.9	49.3	738.4
UG	\$80	Indicated	6,504	\$183.90	1.489	0.636	5.6	0.06	0.090	213.5	132.9	1,167.6
		Inferred	14,162	\$156.85	1.281	0.539	4.9	0.06	0.075	399.9	245.4	2,229.6
Total	Varies as Above	Indicated	12,588	\$138.08	1.203	0.461	4.3	0.10	0.125	333.8	186.6	1,728.0
		Inferred	23,658	\$123.48	1.048	0.387	3.9	0.07	0.068	546.8	294.7	2,968.1

Notes to Table 14-1 through Table 14-3:

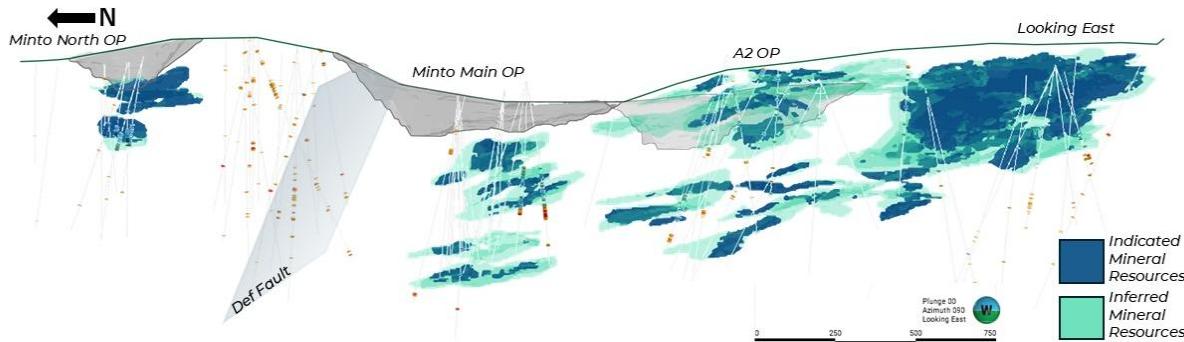
1. The MRE has been completed by Sue Bird of Moose Mountain Technical Services (MMTS).
2. Resources are reported using the 2014 CIM Definition Standards and were estimated using the 2019 CIM Best Practices Guidelines.
3. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.
4. Metal prices of US\$2000/oz Au, US\$23/oz Ag, US\$4.00lb Cu.
5. For the NSR calculations: a currency exchange rate of 0.72 US\$ per \$CA; 95% payable Cu, 88% payable Au and 70% payable Ag; offsite costs (refining, transport and insurance) of US\$256.18/dmt; royalties of 1.5% NSR.
6. Recoveries are as follows:
 - a. CuRec = 95.5% + 1.07*CU% - 113*ASCu/TCu, with a maximum of 98%
 - b. AuRec = 20.99*Augpt + 62.01, with a maximum of 95%
 - c. AgRec = 69.4 + 1.9*Aggpt, to a maximum of 85%
7. These inputs result in the following NSR and CuEq equations:

$$\text{NSR} = \text{CA\$4.73} * \text{CuRecov} * \text{Cu\%} * 22.0462 + (\text{CA\$2400.60} * \text{AuRecov} * \text{Augpt} + \text{CA\$21.45} * \text{AgRecov} * \text{Aggpt}) / 31.10348$$

$$\text{CuEq} = \text{NSR} / (\text{Cu\%} * \text{CuRecov} * 22.0462)$$
8. The Mineral Resource has been confined by a “reasonable prospects of eventual economic extraction” pit or underground shape using the 100% base case NSR for the Ridgetop and Area 118 open pits and by a confining shape for the underground.
9. Mining costs are CA\$4.10/tonne for open pit, CA\$45.42/tonne for underground, Processing costs are CA\$30/tonne milled, and G&A costs are CA\$20.81/tonne milled.
10. Pit slope angles are assumed at 45°.
11. The specific gravity of the deposit has been assigned based on domain as between 2.578 and 2.849 based on sg measurements in the Minto deposit.
12. Oxide Ratio = (ASCu) / (Total Copper)
13. Numbers may not add due to rounding.

Table 14-2: Minto Mineral Resource Estimate – Indicated

Type	Cutoff (CDN\$)	Area	ROM	In situ Grades						Metal		
			Tonnage (000)	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (Mlbs)	Au (Koz)	Ag (Koz)
Open Pit	\$30	Ridgetop	5,693	\$90.09	0.91	0.28	2.92	0.16	0.17	114	52	535
		118	391	\$74.83	0.73	0.13	2.06	0.07	0.05	6	2	26
		Open Pit	6,085	\$89.11	0.90	0.274	2.9	0.15	0.16	120	54	560
UG	\$80	Minto East	401	\$179.60	1.41	0.648	5.8	0.05	0.06	12	8	75
		Minto North	2,162	\$204.69	1.55	0.752	6.2	0.03	0.04	74	52	433
		Copper Keel/Ridgetop	3,918	\$173.43	1.47	0.573	5.2	0.08	0.12	127	72	657
		118	23	\$89.24	0.81	0.185	2.9	0.03	0.02	0	0	2
		UG	6,504	\$183.90	1.49	0.636	5.6	0.06	0.09	213	133	1,168


Table 14-3: Minto Mineral Resource Estimate – Inferred

Type	Cutoff (CDN\$)	Area	ROM	In situ Grades						Metal		
			Tonnage (000)	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (Mlbs)	Au (Koz)	Ag (Koz)
Open Pit	\$30	Ridgetop	4,541	\$83.26	0.79	0.22	3.05	0.11	0.09	80	32	445
		118	4,956	\$64.97	0.62	0.11	1.84	0.05	0.03	67	18	293
		All Open Pit	9,496	\$73.71	0.70	0.162	2.4	0.07	0.06	147	49	738
UG	\$80	Minto East	5,483	\$178.56	1.42	0.665	5.7	0.07	0.09	171	117	1,003
		Minto North	655	\$251.06	1.68	1.111	9.0	0.01	0.01	24	23	189
		Copper Keel/Ridgetop	7,437	\$135.79	1.16	0.428	4.1	0.06	0.07	190	102	978
		118	586	\$115.70	1.09	0.125	3.2	0.02	0.02	14	2	60
		Subtotal-UG	14,162	\$156.85	1.28	0.539	4.9	0.06	0.08	400	245	2,230

The following factors, among others, could affect the Mineral Resource estimate: commodity price and exchange rate assumptions; pit slope angles; assumptions used in generating the LG pit shell, including metal recoveries, and mining and process cost assumptions. The QP is not aware of any environmental, permitting, legal, title, taxation, socioeconomic, marketing, political, or other relevant factors that could materially affect the Mineral Resource Estimate.

A composite image of the modelled blocks by classification is illustrated in (Source: Selkirk Copper, 2025)

Figure 14-1. The image is a northeast-southwest long section showing the relative location of the three resource open pits and the potential underground mineralization. This drawing is a composite image and is not indicative of the “reasonable prospects of eventual economic extraction” underground resource.

(Source: Selkirk Copper, 2025)

Figure 14-1 Composite Long-Section looking Northeast of the Minto Mine Project Deposits

14.1 Key Assumptions and Data used in the Resource Estimate

The total sample database contains results from 1,454 drillholes for a total assayed length of 162,835.80 m. A summary of the drillholes within the Minto block models by is provided in

Table 14-4.

Table 14-4: Summary of Drillhole and Assays used in the Minto Resource

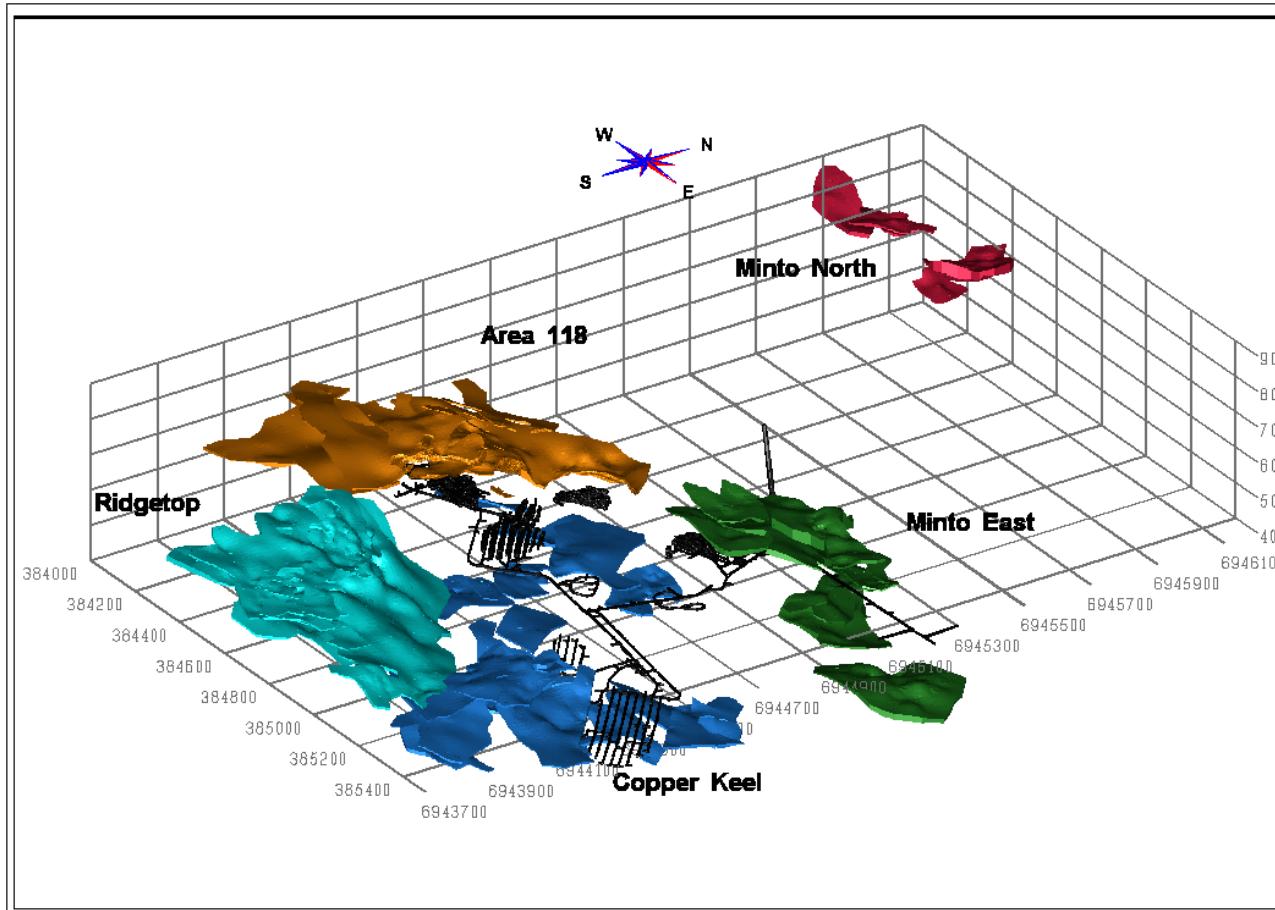
Year	# DHs	Length (m)	Within the Database		Within the Domains	
			# Assays	Total Assay Length (m)	# Assays	Total Assay Length (m)
Undefined	9	1,809	9,502	154,086	85	757
1971	7	1,123	315	705	79	131
1972	12	1,812	501	1,458	84	238
1973	91	13,749	1,923	3,834	17	49
1974	110	19,428	3,057	6,175	90	255
1984	5	518	3	9	---	---
1989	22	966	6	9	---	---
1993	8	960	225	319	---	---
1994	19	2,185	266	419	95	153
1995	6	572	38	56	---	---
1996	4	548	116	176	---	---
1999	5	951	28	35	---	---
2001	17	591	217	422	---	---
2005	56	6,802	1,330	1,895	---	---
2006	119	24,496	11,137	17,214	199	277
2007	101	23,328	11,120	14,760	1,070	1,294
2008	120	23,859	12,704	16,197	1,815	1,946
2009	202	32,048	13,822	19,850	1,501	1,947
2010	167	47,110	19,625	26,394	1,373	1,673
2011	129	45,389	18,594	27,852	1,521	1,771
2012	82	29,806	11,694	16,215	963	1,024

Year	# DHs	Length (m)	Within the Database		Within the Domains	
			# Assays	Total Assay Length (m)	# Assays	Total Assay Length (m)
2014	19	3,026	1,915	2,111	18	17
2015	34	4,851	2,465	2,878	145	146
2016	18	1,276	576	615	8	8
2017	46	5,389	2,321	2,759	545	622
2018	26	3,845	1,008	1,038	167	141
2019	5	1,911	149	140	38	37
2020	132	21,411	5,811	5,496	1,636	1,546
2021	54	13,772	8,638	12,952	1,201	1,359
2022	156	42,559	24,357	40,021	2,910	2,748
Grand Total	1,781	376,089	163,463	376,089	15,560	18,138

14.2 Geologic Modelling

Geological modeling at Minto consisted of creating 3D solids for mineralized domains and major waste types and creating surfaces estimating the depth of overburden and the depth of oxidation.

14.2.1 Mineralized Zones


Wireframes of mineralized zones have been created by manual tagging and grouping of assay intercepts into domain shapes which are congruent with the geological interpretations of the deposit. For the potential open pit mineralized shapes, a minimum copper equivalent (CuEqv) grade of 0.3% and with a thickness of 5m is used, while for potential underground shapes target CuEqv grade of 0.8%, and a true thickness of approximately 3 meters or greater is targeted. These are the approximate CuEqv cutoff grades pertaining to the Processing cost for the open pit areas, and the Processing + Mining costs for the underground shapes.

The cut-off values and/or true thickness targets have occasionally been relaxed in order to provide continuity of mineralized solids, to include internal dilution in the interpolations, and to let the data be used to limit the extent of the domains wherever possible rather than estimating a distance and thickness to extrapolate the wireframes.

The tagged intercepts were then used with the Implicit Modelling Tool in MineSight® to create footwalls and hanging walls for the development of mineralized solids. The surfaces have been clipped to a maximum of 50 m from an outer boundary intercept, or halfway to an adjacent unmineralized drill intercept. All wireframes have then been clipped to topography, the lowest mined surface, and the previous underground mining.

A total of 62 domains have been created: 23 domains for Copper Keel, 12 domains for Ridge Top, 5 domains for Minto North, 12 domains for Minto East 2, and 10 domains for Area 118. These are illustrated in (Source: MMTS, 2025)

Figure 14-2.

(Source: MMTS, 2025)

Figure 14-2 Domains Used for Interpolation and Current Underground

14.2.2 Depth of Oxidation

A surface estimating the depth of oxidation has been used to delineate oxidized portions of the Ridge Top, Copper Keel, and Area 118 areas. The surface targets the lowest depth in each drill hole at which the acid soluble copper is greater than 20% of the total copper.

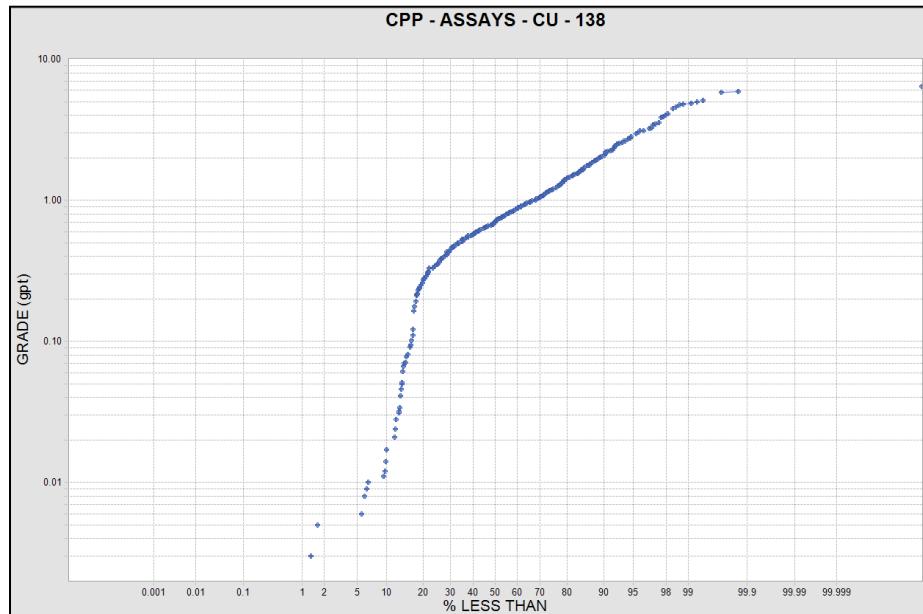
The surface is typically 50meters below topography, but occasionally deeper where oxidation follows faulting.

14.2.3 Overburden

A surface estimating the depth of over-burden has been used to limit the mineralized zones near the topography. The surface targets the depth of drill hole casing used, or the logged depth of overburden, whichever is deeper.

14.2.4 Waste Types

A conglomerate zone limits mineralization in the east and has varying geotechnical properties and sg has also been modelled. It overlays Copper Keel, Area 118, and Ridgetop has been modelled to aid open pit mine planning.


14.3 Assay Statistics and Capping

The assay statistics were examined using boxplots, histograms, and cumulative probability plots (CPPs).
(Source: MMTS, 2025)

Figure 14-3 through (Source: MMTS, 2025)

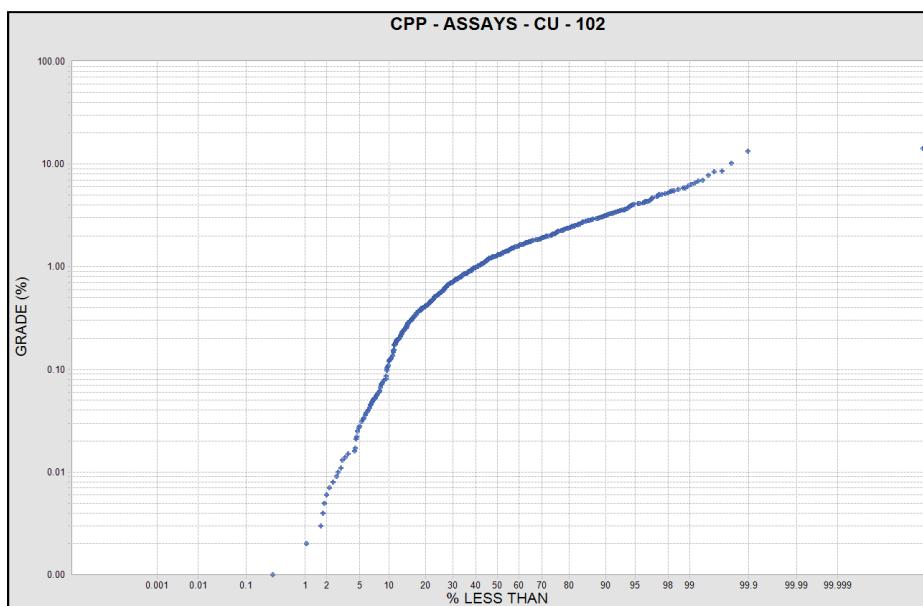

Figure 14-6 are examples of the CPPs for Cu for the Ridgetop, Copper Keel, Minto East and 118 areas respectively.(Source: MMTS, 2025)

Figure 14-7 are the CPPs for Au in Minto North, which has generally higher Au grades.

(Source: MMTS, 2025)

Figure 14-3 CPP of Cu Assay Grades – Ridgetop

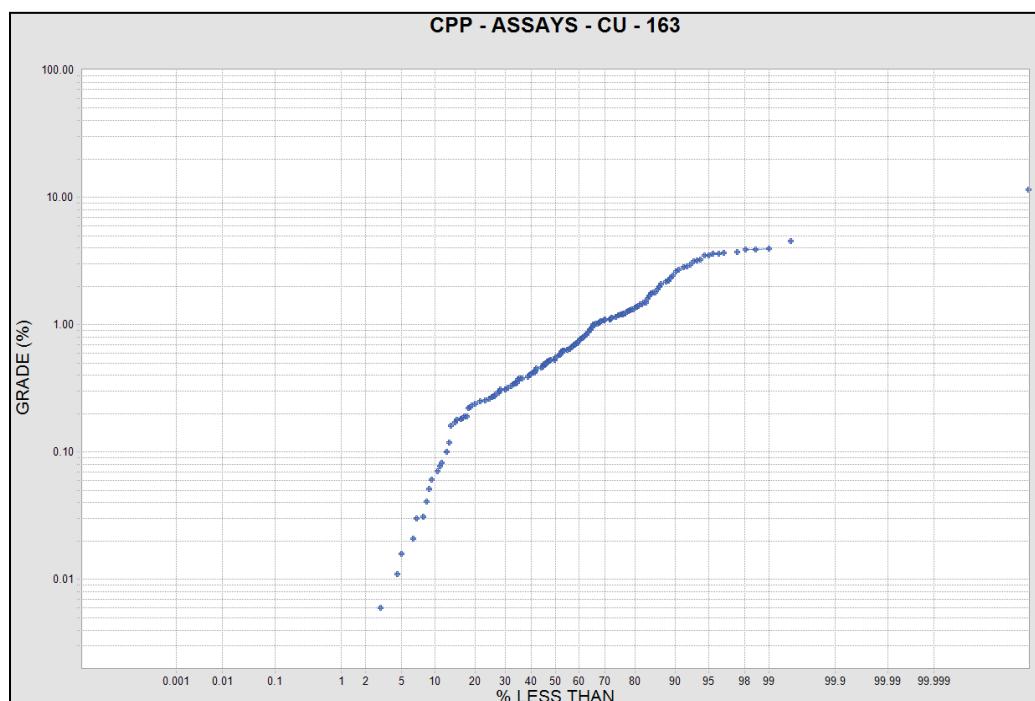

(Source: MMTS, 2025)

Figure 14-4 CPP of Cu Assay Grades - Copper Keel

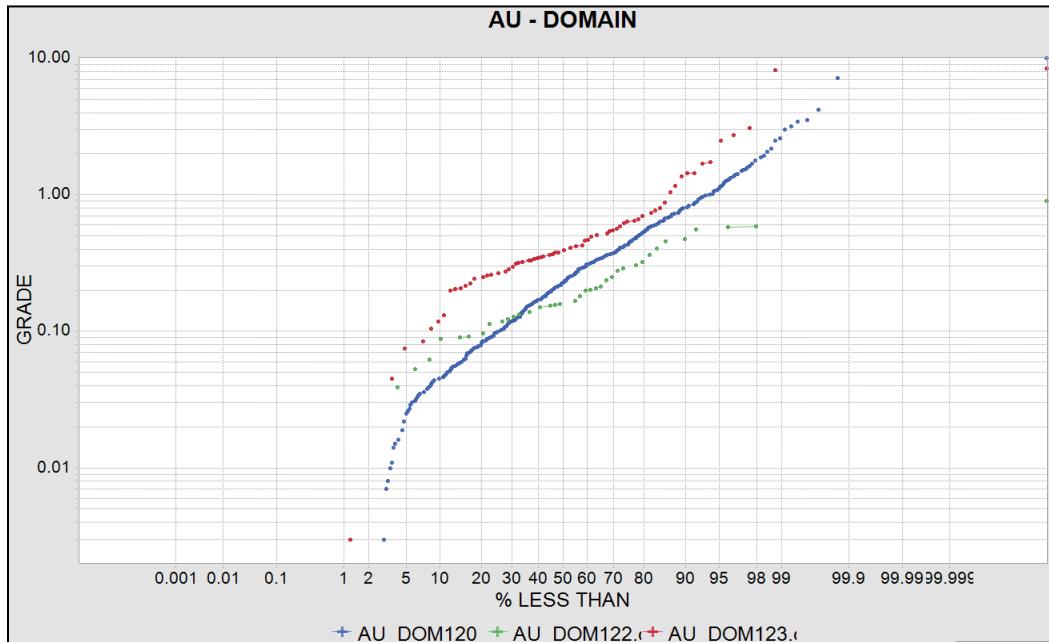

(Source: MMTS, 2025)

Figure 14-5 CPP of Cu Assay Grades - Minto East

(Source: MMTS, 2025)

Figure 14-6 CPP of Cu Assay Grades - Area 118

(Source: MMTS, 2025)

Figure 14-7 CPP of Au Assay Grades - Minto North

The capping values for each area and domain are provided in Table 14-6 through Table 14-9. Also provided in these tables are the Outlier Restriction values used to restrict the higher-grade composite values during interpolation. The distance that composites grades above the value in the table are allowed to influence surrounding blocks is limited to 5m. The Outlier Restriction values have been selected using CPPS of the composites as well as adjusted in order to ensure that the final modelled grades match the de-clustered composite data.

Assay and composite statistics for the capped grades are summarized in

Table 14-10Table 14-6 through Table 14-18 by area and domain for both Cu and Au. These tables illustrate that the composited grades are equal to or very close to the assay grade and therefore compositing has not introduced a bias. Also illustrated by the CPPs and the assay statistics is that the grade distribution is generally log normal and the Coefficient of Variation (C.V.) is equal to or below 2.0, meaning that interpolation by linear methods is acceptable.

Table 14-5: Summary of Capping and Outlier Restriction – Minto East

Domain	CAPPING				OUTLIER GRADE			
	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)
150	20	0.5	10	70	6	0.3	4	-
151	3	0.2	2	10	1.6	0.1	1	-
152	10	0.2	5	50	5	0.1	4	-
153	6	0.2	2	15	2.5	0.1	1	-
154	5	0.2	2	12	2.5	0.1	2	-
155	8	2	3	30	3	1	2	-
156	2	0.1	1	10	1.8	0.1	0.8	-
157	6	0.4	2	50	6	0.5	1.5	-
158	1	0.5	0.4	50	0.7	0.6	0.4	-
159	1	0.5	1	10	0.7	0.2	1	-
203	6	999	3	30	5	-	2	-
204	1	999	0.2	3	0.5	-	0.2	-

Table 14-6: Summary of Capping and Outlier Restriction – Ridgetop / Copper Keel

Domain	CAPPING				OUTLIER GRADE			
	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)
Copper Keel:								
101	5	1	2	20			1.2	10
102	10	0.3	20	40		3	1.5	25
103	-	2	3	30		3	2	20
104	-	0.7	0.5	3	1.2		1.2	1.5
105	-	1	1	10			0.05	5
106	-	0.1	3	20	1	1	1	10
107	-	4	3	20			2.5	10
108	-	3	3	10			2	5
109	10	0.3	5	30		3	3	20
110	10	0.3	12	30	5	10	4	25
111	-	1	1	7			3	
113	5	0.2	2	20	3	1		15
114	7	0.3	3	20	4.5		4.5	20
117	10	0.2	1	15	4			10
118	1.5	0.03	0.4	6				5
119	6	0.2	4	40				30
201	15	999		100				
210	2	0.1	0.6	10				
211	3	0.1	5	15				
212	6	999	2	20				
213	6	999	2	20				
214	2	999	1	10				
215	5	0.1	3	30				
Ridgetop:								
131	6	3	5	30	3	3	3	30
132	2	0.3	1	4	3		3	4
133	10	2	10	30				
134	4	2	0.8	20	3	3	3	30
135	8	4	3	30	5	5	5	20
136	5	2	1.4	999				
137	5	0.2	0.5	9999				4
138	5.5	2	7	999	3	3	3	20
139	4	0.2	2	40	1	1	1	10
140	6	0.2	999	6				
141	3	0.5	0.4	999				
143	2	0.1	1	10				6
145	1.5	1	0.6	5				5

Table 14-7: Summary of Capping and Outlier Restriction – Minto East

Domain	CAPPING				OUTLIER GRADE			
	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)
150	20	0.5	10	70	6	0.3	4	-
151	3	0.2	2	10	1.6	0.1	1	-
152	10	0.2	5	50	5	0.1	4	-
153	6	0.2	2	15	2.5	0.1	1	-
154	5	0.2	2	12	2.5	0.1	2	-
155	8	2	3	30	3	1	2	-
156	2	0.1	1	10	1.8	0.1	0.8	-
157	6	0.4	2	50	6	0.5	1.5	-
158	1	0.5	0.4	50	0.7	0.6	0.4	-
159	1	0.5	1	10	0.7	0.2	1	-
203	6	999	3	30	5	-	2	-
204	1	999	0.2	3	0.5	-	0.2	-

Table 14-8: Summary of Capping and Outlier Restriction – Area 118

Domain	CAPPING				OUTLIER GRADE			
	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)
160	6	2	5	40	3	0.3	0.5	8
161	6	0.1	5	30	2	0.07	0.3	3.5
162	2	0.2	1	4	2	0.13	0.5	4
163	10	2	10	30	4	1.2	0.65	7
164	4	1	0.8	20	1	0.08	0.6	4
165	8	1	3	30	1	1	0.5	3
166	5	0.1	1.4	999	2	0.04	0.2	2
167	5	0.2	0.5	9999	1	0.08	0.3	3
168	5.5	0.2	7	999	3	0.1	0.7	4
169	2	0.1	1	10	1	0.06	0.4	5

Table 14-9: Summary of Capping and Outlier Restriction – Minto North

Domain	CAPPING				OUTLIER GRADE			
	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)	CU (%)	ASCU (%)	AU (gpt)	AG (gpt)
120	10	0.15	5	40	5	0.15	3	20
121	1.4	9999	0.6	5	1	0.5	0.5	4
122	1.5	0.1	0.6	10	1.3	-	0.5	7
123	10	0.15	5	30	5	0.1	2	20
202	7.5	9999	10	50	5	5	5	30

Table 14-10: Summary Statistics of Capped Assays and Composites – Ridgetop – Cu

SOURCE	PARAMETER	DOMAIN												
		131	132	133	134	135	136	137	138	139	140	141	143	145
ASSAYS	Num Samples	397	25	416	247	986	277	77	838	326	17	32	113	45
	Num Missing	2	0	0	1	8	2	0	4	1	0	0	0	2
	Min (%)	0.001	0.007	0.001	0.001	0	0.005	0.004	0.001	0	0.02	0.003	0	0.002
	Max (%)	6	2.05	10	4	8	4.72	5	5.5	4	6	3	2	1.5
	Wtd. Mean (%)	1.01	0.66	0.89	0.73	1.15	0.86	0.82	0.86	0.51	1.32	0.61	0.56	0.51
	Wtd. CV	1.06	0.74	1.15	1.00	1.03	0.93	1.11	0.92	1.03	1.19	1.10	0.71	0.70
COMPS	Num Samples	272	19	274	152	617	205	45	538	211	12	21	75	37
	Num Missing	2	2	1	8	13	2	0	7	3	0	0	0	6
	Min (%)	0.005	0.003	0.001	0.001	0.002	0.001	0.01	0.001	0	0.005	0.002	0.002	0.003
	Max (%)	4.923	1.458	5.846	3.648	6.433	4.509	3.509	4.665	2.168	4.06	2.032	1.987	1.278
	Wtd. Mean (%)	1.01	0.66	0.90	0.73	1.14	0.87	0.82	0.86	0.51	1.32	0.61	0.56	0.51
	Wtd. CV	0.96	0.51	0.92	0.77	0.86	0.80	0.95	0.74	0.80	0.82	0.93	0.60	0.60
DIFFERENCE (%)		-0.1%	0.0%	1.1%	0.0%	-0.2%	1.8%	0.0%	0.0%	-0.2%	0.0%	0.0%	0.0%	-0.6%

Table 14-11: Summary Statistics of Capped Assays and Composites – Ridgetop – Au

SOURCE	PARAMETER	DOMAIN												
		131	132	133	134	135	136	137	138	139	140	141	143	145
ASSAYS	Num Samples	393	25	407	243	958	260	77	826	313	17	32	113	45
	Num Missing	6	0	9	5	36	19	0	16	14	0	0	0	2
	Min (gpt)	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	Max (gpt)	5	0.681	10	0.8	3	1.4	0.5	7	2	0.15	0.4	1	0.6
	Wtd. Mean (gpt)	0.39	0.19	0.38	0.09	0.33	0.15	0.09	0.29	0.12	0.07	0.05	0.16	0.09
	Wtd. CV	1.91	1.09	1.81	1.49	1.81	1.13	1.28	1.69	1.51	0.67	1.10	1.11	1.49
COMPS	Num Samples	267	19	261	148	583	186	45	526	190	12	21	75	37
	Num Missing	7	2	14	12	47	21	0	19	24	0	0	0	6
	Min (gpt)	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	Max (gpt)	3.32	0.56	2.993	0.664	2.776	1.4	0.42	5.002	0.858	0.104	0.222	0.99	0.492
	Wtd. Mean (gpt)	0.39	0.19	0.38	0.09	0.32	0.15	0.09	0.29	0.12	0.07	0.05	0.16	0.09
	Wtd. CV	1.72	0.92	1.29	1.30	1.67	1.06	1.16	1.43	1.14	0.42	0.78	0.95	1.35
DIFFERENCE (%)		-0.1%	0.0%	0.4%	0.1%	-0.8%	0.3%	0.1%	-0.2%	-0.2%	0.1%	0.2%	0.0%	-0.7%

Table 14-12:

Summary Statistics of Capped Assays and Composites – Copper Keel – Cu

SOURCE	PARAMETER	DOMAIN																			
		101	102	103	104	105	106	107	108	109	110	111	113	114	117	118	119	201	210	211	212
ASSAYS	Num Samples	287	1349	240	17	33	41	34	21	158	296	38	149	1312	87	32	364	265	46	125	127
	Num Missing	1	29	1	0	0	0	0	0	2	3	0	0	397	0	0	10	2	0	0	0
	Min (%)	0.002	0	0.005	0.025	0.009	0.03	0.034	0.013	0.001	0.001	0.016	0.004	0	0.005	0.118	0.001	0.005	0.168	0.001	0.004
	Max (%)	5	10	8.89	2.78	3.6	6.68	8.34	9.83	10	10	7.91	5	7	10	1.5	6	15	2	3	6
	Wtd. Mean (%)	1.240	1.512	1.516	0.977	1.228	0.993	1.945	1.769	1.859	1.410	0.821	1.219	1.023	1.209	0.769	1.455	2.462	0.843	0.896	0.977
	Wtd. CV	0.67	0.77	0.85	0.90	0.72	1.28	0.88	1.59	0.92	0.91	1.19	0.67	0.94	1.18	0.52	0.91	1.09	0.55	0.71	1.18
COMPS	Num Samples	175	737	149	13	22	32	18	11	97	174	28	105	623	48	22	191	117	32	67	76
	Num Missing	6	25	3	3	0	0	0	0	0	21	0	0	491	0	0	28	2	1	0	0
	Min (%)	0.004	0	0.009	0.02	0.007	0.005	0.043	0.015	0	0.001	0.001	0.011	0	0.022	0.013	0.001	0.005	0.016	0.001	0
	Max (%)	3.784	6.767	4.724	2.17	2.987	5.304	5.163	4.451	5.305	5.308	3.268	3.647	5.207	7.215	1.455	4.585	13.206	2.813	2.339	3.672
	Wtd. Mean (%)	1.239	1.510	1.516	0.977	1.228	0.993	1.945	1.769	1.841	1.407	0.821	1.219	1.006	1.209	0.769	1.413	2.470	0.843	0.896	0.977
	Wtd. CV	0.57	0.66	0.62	0.65	0.57	1.05	0.71	0.83	0.71	0.81	0.82	0.57	0.79	0.98	0.45	0.80	0.95	0.40	0.55	0.88
DIFFERENCE (%)		-0.1%	-0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	-1.0%	-0.2%	0.0%	0.0%	-1.7%	0.0%	0.0%	-3.0%	0.3%	0.0%	0.0%	0.0%

Table 14-13:

Summary Statistics of Capped Assays and Composites – Copper Keel - Au

SOURCE	PARAMETER	DOMAIN																			
		101	102	103	104	105	106	107	108	109	110	111	113	114	117	118	119	210	211	212	
ASSAYS	Num Samples	287	891	238	17	33	41	34	21	158	296	38	149	1183	87	32	320	46	110	104	
	Num Missing	1	487	3	0	0	0	0	0	2	3	0	0	526	0	0	54	0	15	23	
	Min (gpt)	0.002	0.002	0.002	0.002	0.002	0.002	0.514	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.014	0.002	0.054	0.002	0.002	
	Max (gpt)	2	7.77	3	0.5	1	3	3	2.73	5	8.21	1	2	3	1	0.4	4	0.6	5	2	
	Wtd. Mean (gpt)	0.401	0.483	0.543	0.124	0.280	0.282	1.440	0.744	0.854	0.765	0.217	0.373	0.451	0.333	0.114	0.762	0.247	0.497	0.333	
	Wtd. CV	0.89	1.11	0.97	1.13	0.77	1.83	0.51	0.98	0.97	1.35	0.67	1.03	1.03	0.83	0.98	1.01	0.54	1.23	1.11	
COMPS	Num Samples	175	510	148	13	22	32	18	11	97	174	28	105	569	48	22	167	32	60	64	
	Num Missing	6	252	4	3	0	0	0	0	0	21	0	0	545	0	0	52	1	7	12	
	Min (gpt)	0.002	0.002	0.002	0.002	0.002	0.002	0.642	0.006	0.002	0.002	0.002	0.002	0.004	0.002	0.002	0.002	0.01	0.003	0.002	
	Max (gpt)	1.724	6.044	2.822	0.414	0.857	1.661	2.593	2.193	3.18	5.02	0.543	1.881	2.743	1	0.38	3.294	0.93	2.757	1.677	
	Wtd. Mean (gpt)	0.40	0.48	0.54	0.12	0.28	0.28	1.44	0.74	0.85	0.76	0.22	0.37	0.44	0.3331	0.1138	0.7395	0.2474	0.497	0.3331	
	Wtd. CV	0.77	0.97	0.86	1.01	0.66	1.43	0.39	0.83	0.82	1.17	0.55	0.91	0.88	0.7831	0.9104	0.8747	0.4279	0.8938	0.8763	
DIFFERENCE (%)		0.0%	-0.1%	-0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	-1.0%	-0.2%	0.0%	0.0%	-2.0%	0.0%	-0.1%	-3.0%	0.0%	0.0%	0.0%	

Table 14-14: Summary Statistics of Capped Assays and Composites – Minto East – Cu

SOURCE	PARAMETER	DOMAIN											
		150	151	152	153	154	155	156	157	158	159	203	204
ASSAYS	Num Samples	459	178	127	35	260	710	157	27	20	26	87	9
	Num Missing	0	1	1	0	1	11	0	0	0	0	0	0
	Max (%)	20	3	10	6	5	8	2	6	1	2	6	1
	Wtd mean (%)	1.51	0.60	1.31	1.19	0.77	0.57	0.46	0.56	0.43	0.30	2.10	0.39
	Weighted CV	1.18	0.81	1.11	0.99	0.80	1.26	0.68	1.62	0.72	1.10	0.82	0.87
COMPS	Num Samples	222	92	56	24	149	453	105	19	17	20	36	4
	Num Missing	0	10	0	0	1	37	0	0	0	0	0	0
	Max (%)	7.664	2.286	5.953	2.655	4.475	7.79	1.352	2.215	0.957	0.828	5.36	0.522
	Wtd mean (%)	1.51	0.60	1.30	1.19	0.77	0.57	0.46	0.56	0.43	0.30	2.10	0.39
	Weighted CV	0.90	0.70	0.85	0.71	0.65	1.07	0.58	0.74	0.64	0.76	0.76	0.29
	Difference (%)	0.0%	-0.5%	0.0%	0.0%	0.0%	-0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Table 14-15: Summary Statistics of Capped Assays and Composites – Minto East - Au

SOURCE	PARAMETER	DOMAIN											
		150	151	152	153	154	155	156	157	158	159	203	204
ASSAYS	Num Samples	459	176	127	35	260	710	157	27	20	26	87	9
	Num Missing	0	3	1	0	1	11	0	0	0	0	0	0
	Max (gpt)	10	2	5	1.714	1.99	3	0.98	2	0.4	1	3	0.5
	Wtd mean (gpt)	0.87	0.21	0.53	0.43	0.23	0.18	0.09	0.23	0.18	0.25	0.96	0.13
	Weighted CV	1.11	1.07	1.20	1.03	1.19	1.41	1.68	1.21	0.68	1.30	0.81	1.28
COMPS	Num Samples	222	92	56	24	149	453	105	19	17	20	36	4
	Num Missing	0	10	0	0	1	37	0	0	0	0	0	0
	Max (gpt)	4.391	0.959	3.001	1.64	1.775	1.548	0.522	1.05	0.377	1	2.584	0.265
	Wtd mean (gpt)	0.87	0.21	0.53	0.43	0.23	0.18	0.09	0.23	0.18	0.25	0.96	0.13
	Weighted CV	0.86	0.80	1.04	0.94	1.05	1.12	1.25	0.75	0.60	1.17	0.70	0.74
	Difference (%)	0.0%	-1.2%	0.0%	0.0%	0.0%	-0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	-0.2%

Table 14-16: Summary Statistics of Capped Assays and Composites – Area 118 – Cu

SOURCE	PARAMETER	DOMAIN										
		160	161	162	163	164	165	166	167	168	169	
ASSAYS	Num Samples	874	157	248	227	48	10	23	28	28	72	
	Num Missing	3	0	2	2	0	0	0	0	0	0	
	Min (%)	0	0.001	0	0.005	0.02	0.009	0.002	0.002	0.001	0.001	
	Max (%)	5.4	2.15	5.23	11.5	2.09	1.51	1.97	1.25	3.35	3.38	
	Wtd mean (%)	0.61	0.57	0.57	0.85	0.60	0.66	0.54	0.60	0.69	0.48	
	Weighted CV	0.89	0.65	0.95	1.23	0.75	0.73	0.92	0.65	0.96	0.94	
COMPS	Num Samples	582	94	156	127	32	6	14	19	17	43	
	Num Missing	47	0	5	15	0	0	0	0	0	0	
	Min (%)	0	0.005	0	0.005	0.13	0.19	0.007	0.006	0.15	0.008	
	Max (%)	4.94	1.75	3.367	5.134	1.803	1.39	1.97	1.11	3.35	1.435	
	Wtd mean (%)	0.61	0.57	0.57	0.85	0.60	0.66	0.54	0.60	0.69	0.48	
	Weighted CV	0.77	0.56	0.81	1.01	0.63	0.71	0.83	0.48	0.77	0.65	
Difference (%)		0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

Table 14-17: Summary Statistics of Capped Assays and Composites – Area 118 – Au

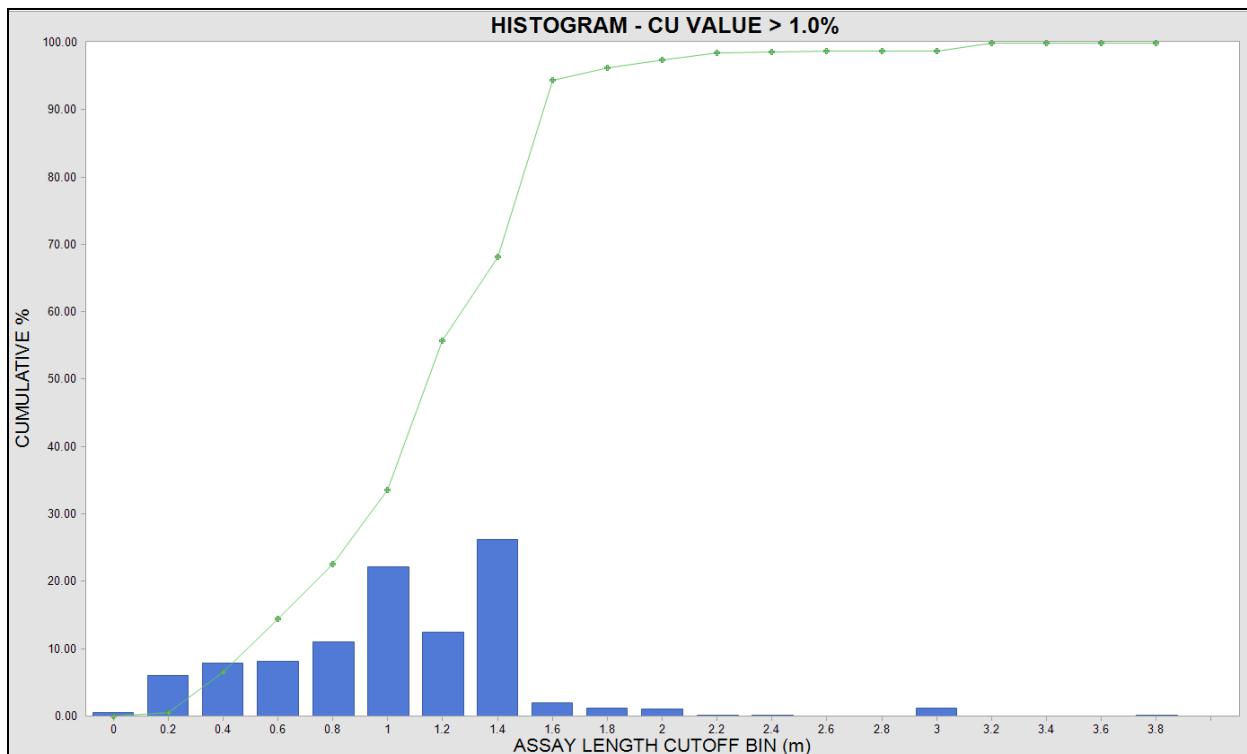

SOURCE	PARAMETER	DOMAIN									
		160	161	162	163	164	165	166	167	168	169
ASSAYS	Num Samples	862	157	248	227	47	10	23	28	28	72
	Num Missing	15	0	2	2	1	0	0	0	0	0
	Min (gpt)	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	Max (gpt)	2.46	0.65	0.82	1.15	1.485	0.324	0.474	0.302	1.455	0.62
	Wtd mean (gpt)	0.11	0.07	0.10	0.08	0.13	0.09	0.05	0.10	0.15	0.11
	Weighted CV	1.58	1.40	1.18	1.93	1.84	1.06	1.76	0.90	1.24	0.92
COMPS	Num Samples	565	94	156	127	30	6	14	19	17	43
	Num Missing	64	0	5	15	2	0	0	0	0	0
	Max (gpt)	0.002	0.002	0.002	0.002	0.008	0.029	0.002	0.002	0.016	0.002
	Max (gpt)	2.46	0.616	0.644	1.15	1.178	0.324	0.183	0.302	1.455	0.283
	Wtd mean (gpt)	0.11	0.07	0.10	0.08	0.13	0.09	0.05	0.10	0.15	0.11
	Weighted CV	1.49	1.33	1.07	1.76	1.45	1.01	1.10	0.71	1.13	0.68
Difference (%)		-0.1%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%

Table 14-18: Summary Statistics of Capped Assays and Composites – Minto North – Cu and Au

SOURCE	PARAMETER	DOMAIN									
		CU					AU				
		120	121	122	123	202	120	121	122	123	202
ASSAYS	Num Samples	652	35	58	80	185	652	35	58	80	185
	Num Missing	7	2	0	1	0	7	2	0	1	0
	Min	0.001	0	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	Max	10	1.4	1.5	10	10	5	0.6	0.6	5	10
	Wtd mean	1.28	0.65	0.51	1.11	1.11	0.37	0.26	0.21	0.62	1.11
	Weighted CV	0.94	0.61	0.71	1.53	1.64	1.36	0.72	0.74	1.27	1.64
COMPS	Num Samples	321	19	45	55	70	321	19	45	55	70
	Num Missing	2	14	0	6	0	2	14	0	6	0
	Min	0.004	0	0.06	0.19	0.004	0.002	0.002	0.035	0.071	0.004
	Max	6.344	1.175	1.5	6.139	6.936	3.141	0.543	0.587	3.344	6.936
	Wtd mean	1.27	0.63	0.51	1.11	1.11	0.37	0.25	0.21	0.62	1.11
	Weighted CV	0.79	0.56	0.67	1.10	1.37	1.10	0.61	0.69	0.98	1.37
Difference (%)		-0.4%	-3.6%	0.0%	0.0%	0.0%	-0.4%	-3.6%	0.0%	0.0%	0.0%

14.4 Compositing

Assay sample lengths varied across the drill programs but are generally between 1.0 and 3.0 m. A histogram of the assay intervals with assayed Cu is shown in Figure 14-8, illustrating that over 95% of the assays with Cu greater than 1% have an assay length of less than 2m. A base composite length of 2.0 m was used to ensure assay sample splits are minimized, as well as to reduce the C.V. For the Nearest Neighbour modelling, a composite length of 4m is used to conform to the block size and align with potential selective mining unit. Assay data have been coded with a domain value prior to compositing. The domain code was honoured during compositing. Any interval within a domain that was less than 1.0 m was composited with the interval above it.

(Source: MMTS, 2025)

Figure 14-8 Histogram of Assay Lengths

14.5 Specific Gravity Assignment

Model blocks were assigned the mean specific gravity by domain. Where there is no sg data within a domain, it is given the mean value of 2.68. The sg assignment by domain is summarized in Table 14-19. The specific gravity outside domains is also assigned based on the mean sg and is given in Table 14-20. The sg in overburden is assumed to be 2.0.

Table 14-19: Summary of SG within Mineralized Domains

Ridgetop		Cu Keel		Minto East	
Domain	sg	Domain	sg	Domain	sg
101	2.756	131	2.631	150	2.714
102	2.716	132	2.68	151	2.714
103	2.682	133	2.715	152	2.714
104	2.642	134	2.668	153	2.714
105	2.6	135	2.659	154	2.714
106	2.776	136	2.601	155	2.714
107	2.65	137	2.723	156	2.714
108	2.647	138	2.738	157	2.714
109	2.842	139	2.678	158	2.714
110	2.765	140	2.664	159	2.714
111	2.75	141	2.632	203	2.714
113	2.695	143	2.69	204	2.714
114	2.708	145	2.6		
117	2.714	Area 118		Minto North	
118	2.729	Domain	sg	Domain	sg
119	2.68	160	2.672	120	2.771
201	2.755	161	2.683	121	2.74
210	2.7	162	2.667	122	2.737
211	2.769	163	2.669	123	2.764
212	2.8	164	2.578	202	2.769
213	2.835	165	2.58		
214	2.82	166	2.69		
215	2.791	167	2.81		
		168	2.78		
		169	2.7		

Table 14-20: Summary of SG outside Domains by Zone

Zone	sg
Overburden	2.0
Conglomerate	2.685
Oxide	2.663
Sulfide	2.71

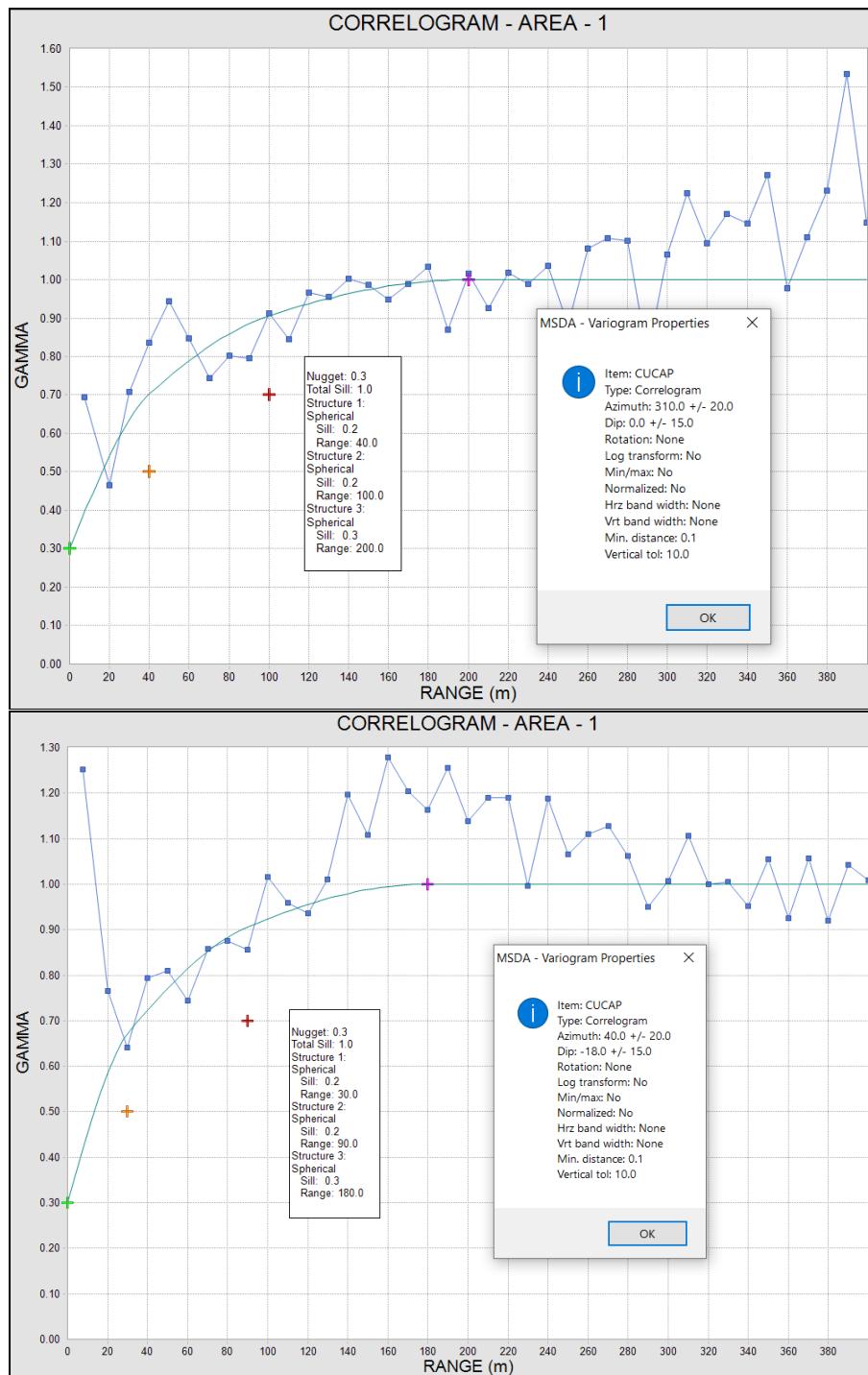
14.6 Block Model Interpolations

The block model uses 4x4x4 m blocks with the extents of each of the models summarized in Table 14-21. This block size has been chosen based on the expected Selective Mining Unit (SMU). The models are “block percent models” with the percent of the block with up to two domains and the domain code stored. Interpolations are done for each of the domains within the block, with the weighted average grade and total domain percent for the block calculated.

MineSight© software was used for geostatistical investigations and interpolations, as well as for the “reasonable prospects of eventual economic extraction” pit and to generate the resource statement.

Table 14-21: Summary of Block Model Extents

Deposit	Direction	Minimum	Maximum	Size (m)	Distance (m)	Number
Minto North:	Easting	383,800	384,800	4	1,000	250
	Northing	6,945,780	6,946,080	4	300	75
	Elevation	680	980	4	300	75
Minto East	Easting	384,800	385,920	4	1,120	280
	Northing	6,944,800	6,945,300	4	500	125
	Elevation	280	880	4	600	150
Ridgetop-Cu Keel	Easting	384,380	386,500	4	2,120	530
	Northing	6,943,180	6,944,880	4	1,700	425
	Elevation	380	1,000	4	620	155
118	Easting	384,000	385,400	4	1,400	350
	Northing	6,943,800	6,945,000	4	1,200	300
	Elevation	660	980	4	320	80


14.7 Variography

Variograms were created where possible in order to help define appropriate search parameters and drillhole spacing requirements for Classification. Correlograms were created by combining domains of the same approximate orientation and within domains having sufficient data. It is considered that, due to the similarity of the mineralization style throughout the deposit, the search parameters based on the Variography is similar, with only the orientation changing to match the orientation of the domain.

(Source: MMTS, 2025)

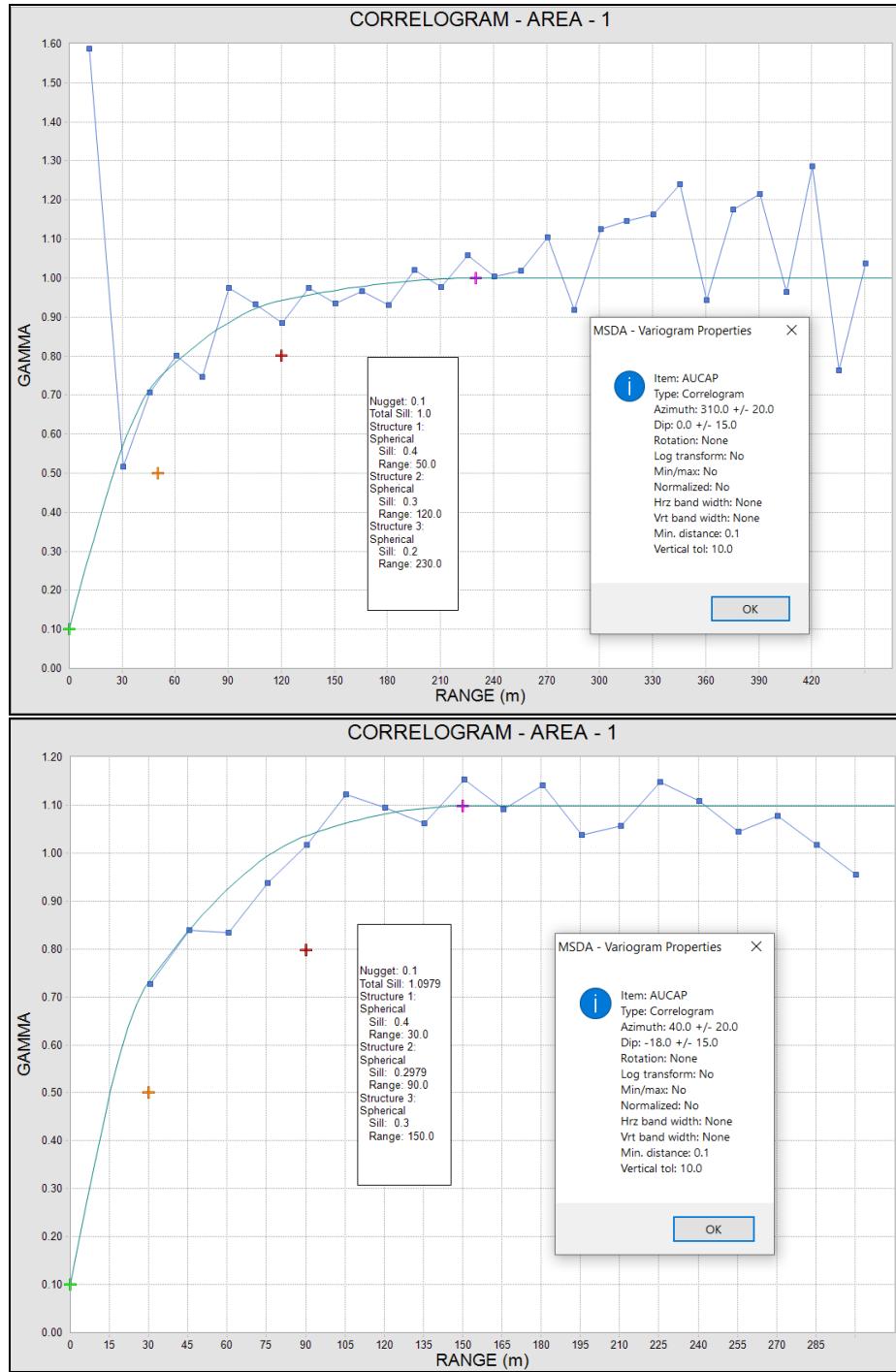

Figure 14-9 and (Source: MMTS, 2025)

Figure 14-10 illustrate correlogram models for Cu and Au respectively for a group of domains having similar orientation within the Copper Keel area.

(Source: MMTS, 2025)

Figure 14-9 Correlogram Model for a Group of Domains in Copper Keel – Cu

(Source: MMTS, 2025)

Figure 14-10 Correlogram Model for a Group of Domains in Copper Keel – Au

14.8 Interpolation Search Criteria

The search orientations are oriented with the domain solid as summarized in Table 14-22 through Table 14-26. In some cases when the domain orientation changed, it was split and given an ICode code in

order to change the search orientation within the domain. For example, Domain 101 in Copper Keel is split into 3 “ICodes”, denoted as 1011, 1012, 1013, as summarized in the tables. The GSLib-Minesight rotation parameters are used in which Rot1 is the rotation about the y-axis (azimuth), Rot2 is the orientation about the x-axis (Plunge with down as negative) and Rot3 denotes rotation about the z-axis (using the righthand rule).

The interpolation of Cu, Au, Ag and acid soluble Cu (ASCu) has been completed in each domain and area. The interpolation used ID² in 4 passes. Table 14-27 provides the sample selection criteria for each of the 4 interpolation passes and

Table 14-28 summarizes the search distances used.

Table 14-22: Summary of Search Orientation by Domain – Ridgetop

ICode	Rot1	Rot2	Rot3
131	330	0	-22
132	320	0	-25
133	307	0	-25
134	335	0	-45
135	310	0	-35
136	320	0	-15
137	325	0	-25
138	330	0	-25
139	330	0	-25
140	325	0	-15
141	350	0	-30
143	335	0	-7
145	335	0	-7

Table 14-23: Summary of Search Orientation by Domain – Copper Keel

ICode	Rot1	Rot2	Rot3
1011	40	-15	-10
1012	15	-30	-10
102	130	0	20
103	0	0	0
104	270	-5	0
105	0	0	0
106	0	-15	-5
107	0	0	0
108	320	-10	0
1091	100	-15	5
1092	210	-15	10
1101	60	-5	-5
1102	40	-15	0
111	80	-15	0
113	40	-25	0
114	345	-15	-5
117	260	0	-10
118	40	0	20
119	285	0	-8
201	285	0	-8
210	40	0	20
211	285	0	-8
213		0	
214		0	
215		0	

Table 14-24: Summary of Search Orientation by Domain – Minto East

ICode	Rot1	Rot2	Rot3
150	290	0	-8
151	280	0	15
152	255	0	0
153	305	0	-50
1541	325	0	-18
1542	278	0	-22
155	260	0	-20
156	250	0	-15
157	185	0	-5
158	280	0	15
159	255	0	0
203	325	0	-18
204	278	0	-22

Table 14-25: Summary of Search Orientation by Domain – Area 118

ICode	Rot1	Rot2	Rot3
160	120	0	10
161	215	0	-25
1621	90	0	13
1622	104	0	-26
163	110	0	4
164	70	0	18
165	70	0	30
166	88	0	17
167	90	0	12
168	95	0	15
169	95	0	15

Table 14-26: Summary of Search Orientation by Domain – Minto North

ICode	Rot1	Rot2	Rot3
120	60	0	15
121	45	0	-5
122	60	0	12
123	45	0	5

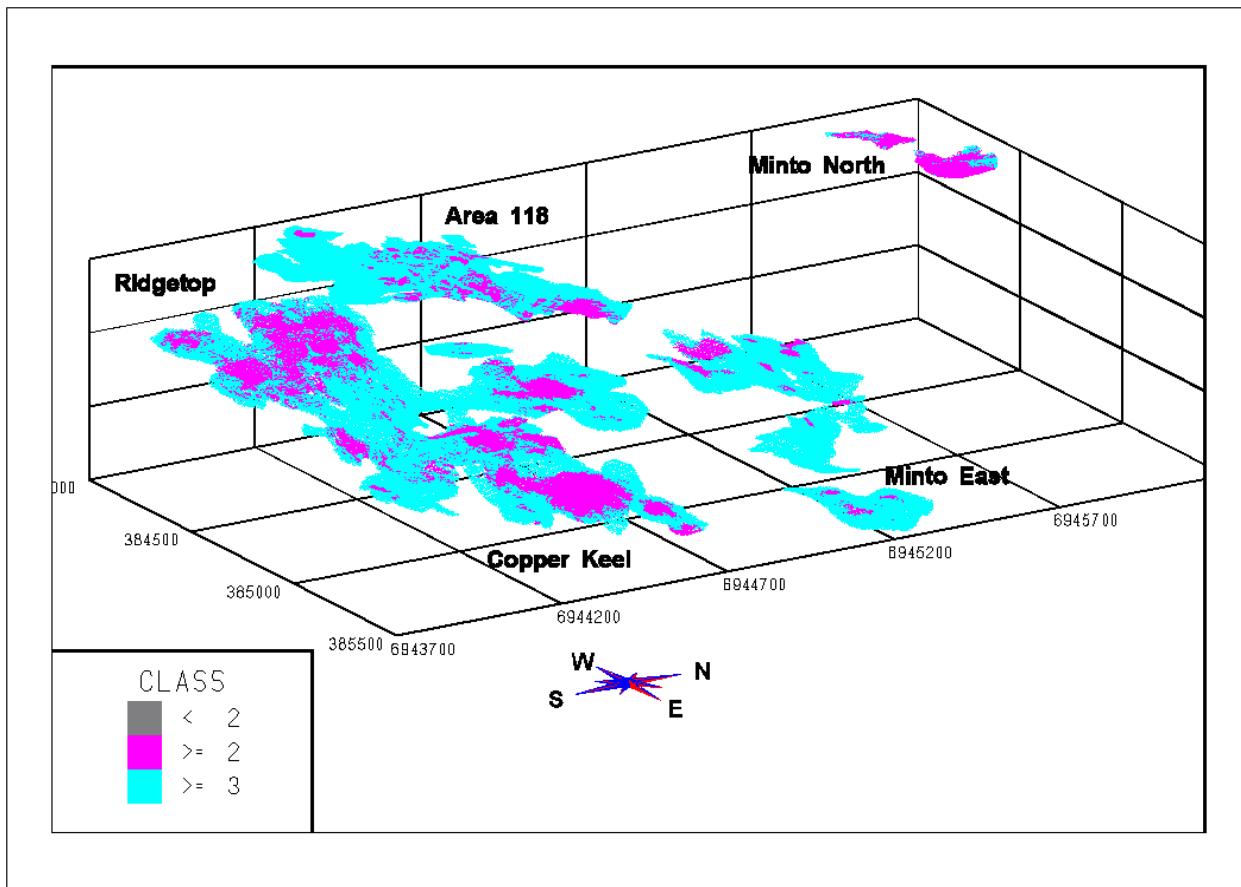
Table 14-27: Summary of Sample Selection Search Criteria by Interpolation Pass

Parameter	Criteria			
	Pass 1	Pass 2	Pass 3	Pass 4
Minimum # Composites	9	9	6	1
Max. Number of composites	12	12	12	9
Max composites/ DH	3	3	3	3
Max / Quadrant	6	6	6	na

Table 14-28: Summary of Search Distance by Interpolation Pass and Area

Area	Pass 1	Pass 2	Pass 3	Pass 4
Ridgetop	20	40	80	80
	20	40	80	80
	5	8	12	12
Copper Keel	40	80	160	200
	30	60	120	180
	10	15	15	20
Minto East	20	40	80	80
	20	40	80	80
	5	8	12	12
Area 118	20	40	80	80
	20	40	80	80
	5	8	12	12
Minto North	25	50	100	200
	20	40	80	180
	5	10	15	20

14.9 Classification of Mineral Resources


Blocks were assigned a preliminary Classification of Inferred if they had been interpolated with a Cu value. They were then assigned a preliminary value of Indicated based on the average distances to at least two drillholes, the furthest distance to a drillhole and the minimum number of drillholes used in the interpolation, as summarized in Table 14-29. The distances required for Indicated classification have

been derived from the correlograms. The range at approximately 80% of the sill (R80) in each area has been used to define the required average distance to 2 drillholes. The furthest distance to one of these holes is calculated as the “hypotenuse” of a right-angle isosceles triangle with sides the distance to 2 drillhole requirements. These requirements together approximate the spacing for Indicated of a regular drillhole configuration. Areas of isolated blocks of Indicated were then removed to assure continuity of Classification.

Table 14-29: Classification Parameters

Area	Avg. Distance to 2 DHs (m)	Distance to Furthest DH (m)	Number of DHs
Ridgetop / Copper Keel	55	70	3
Minto East	30	42	3
Area 118	55	70	3
Minto North	80	90	2

Figure 14-11, is a 3D image illustrating the final block Classification and the drillhole density.

(Source: MMTS, 2025)

Figure 14-11 Illustration of Classification (2=Indicated, 3=Inferred)

14.10 Model Validation

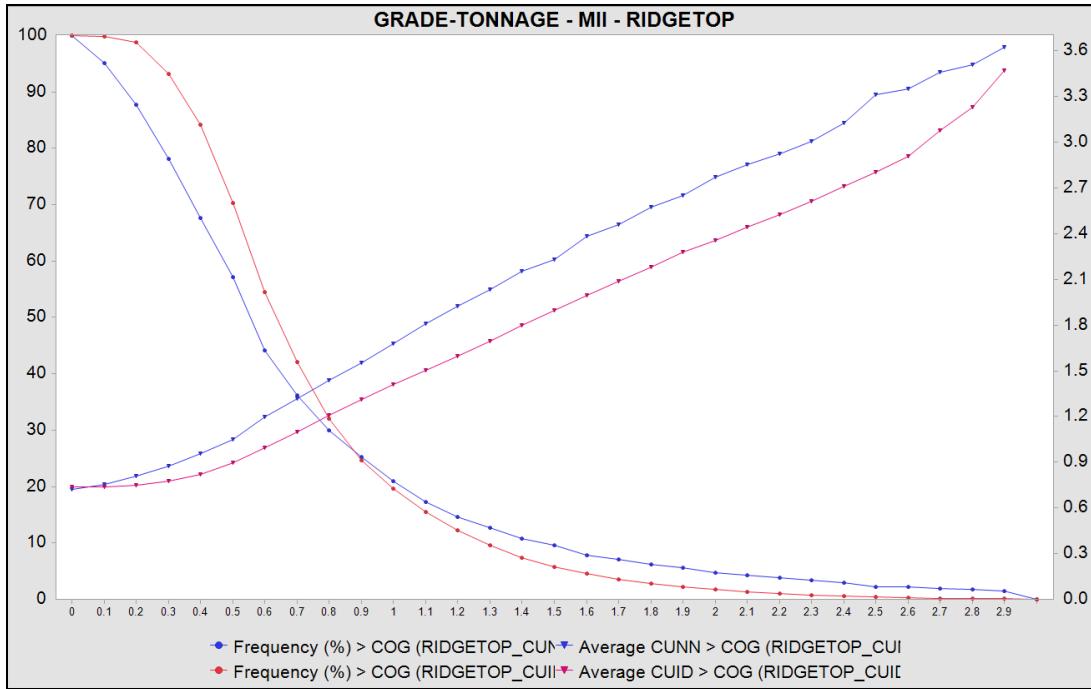
The capping, outlier restrictions, modelling methods, and search parameters were chosen so that the final interpolated grades closely match the de-clustered composite data (using a nearest-neighbors or NN model) while showing appropriate smoothing.

In order to perform appropriate validations, a NN model was created in order to compare the de-clustered composites to the modelled grades.

14.10.1 Global Grade Validation

Resource validation to ensure there was no global bias compared NN grades to those of the final grade interpolation at zero cut-off. Table 14-30 summarizes this comparison by domain, illustrating that the difference in all grades by domain is within 10% overall with lower grades for the ID² model. This is accompanied by increased tonnage for similar overall metal content.

Table 14-30: Summary of Model Grade Comparison with De-Clustered Composites by Domain


Area	Method	In situ Grade			
		Cu (%)	Au(gpt)	Ag (gpt)	AsCu (%)
Ridgetop / Cu Keel	ID ²	0.9988	0.3361	3.22	0.11
	NN	1.009	0.371	3.500	0.111
	Difference	-1%	-10%	-9%	-1%
Minto East	ID ²	0.8791	0.365	3.63	0.0738
	NN	0.969	0.369	3.800	0.080
	Difference	-10%	-1%	-5%	-9%
Area 118	ID ²	0.8791	0.365	3.63	0.0738
	NN	0.969	0.369	3.800	0.080
	Difference	-10%	-1%	-5%	-9%
Minto North	ID ²	1.0635	0.3765	3.76	0.0562
	NN	1.100	0.372	4.110	0.056
	Difference	-3%	1%	-9%	1%

14.10.2 Grade-Tonnage Curves

Grade-tonnage curves were created to compare the interpolated grades with de-clustered composite grades. (Source: MMTS, 2025)

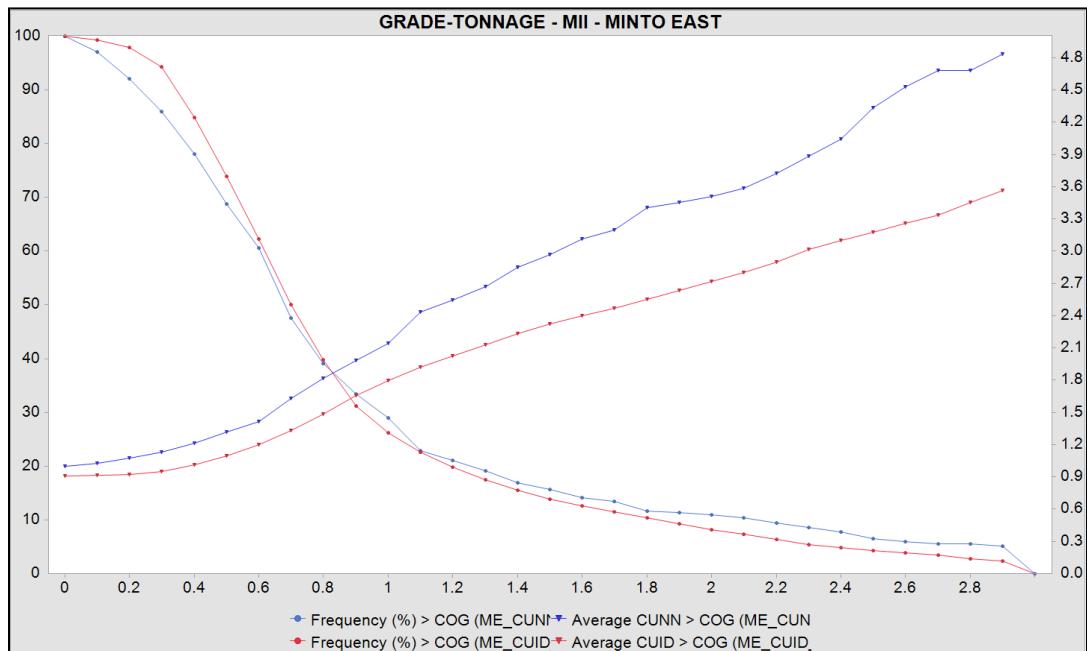

Figure 14-12 through (Source: MMTS, 2025)

Figure 14-15 illustrate this comparison, showing increased smoothing (reduced grades and increased tonnage) compared to the uncorrected NN grade curves, but a similar distribution.

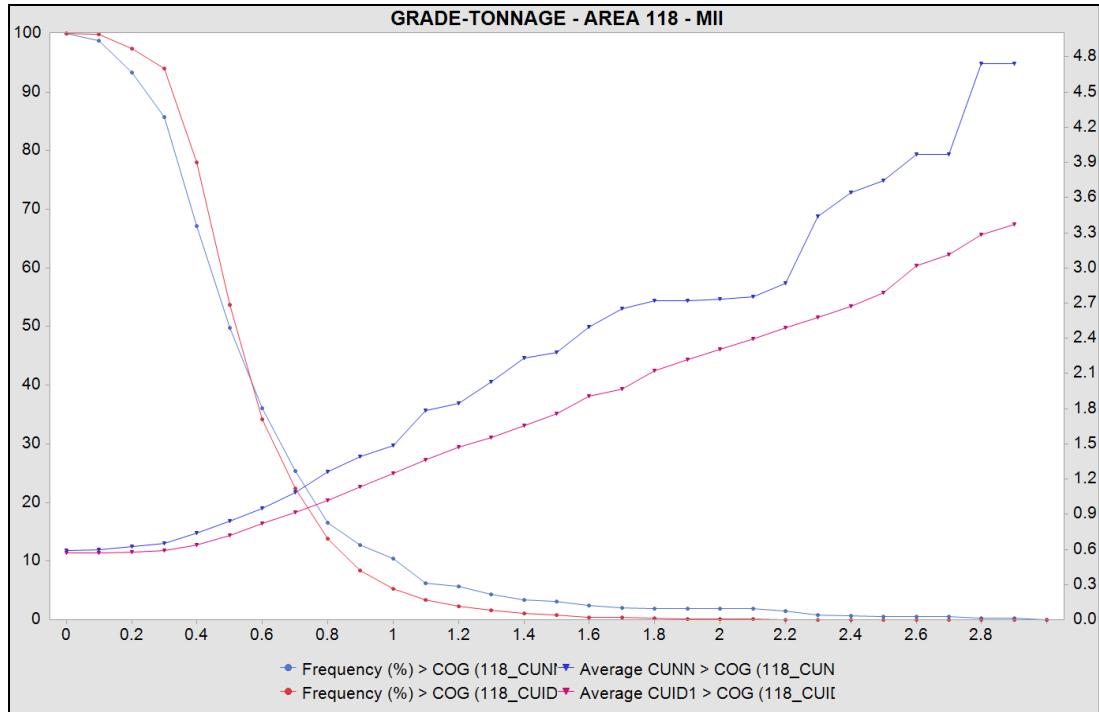

(Source: MMTS, 2025)

Figure 14-12 Grade-Tonnage Curve Comparison for Cu – Ridgetop- Cu Keel

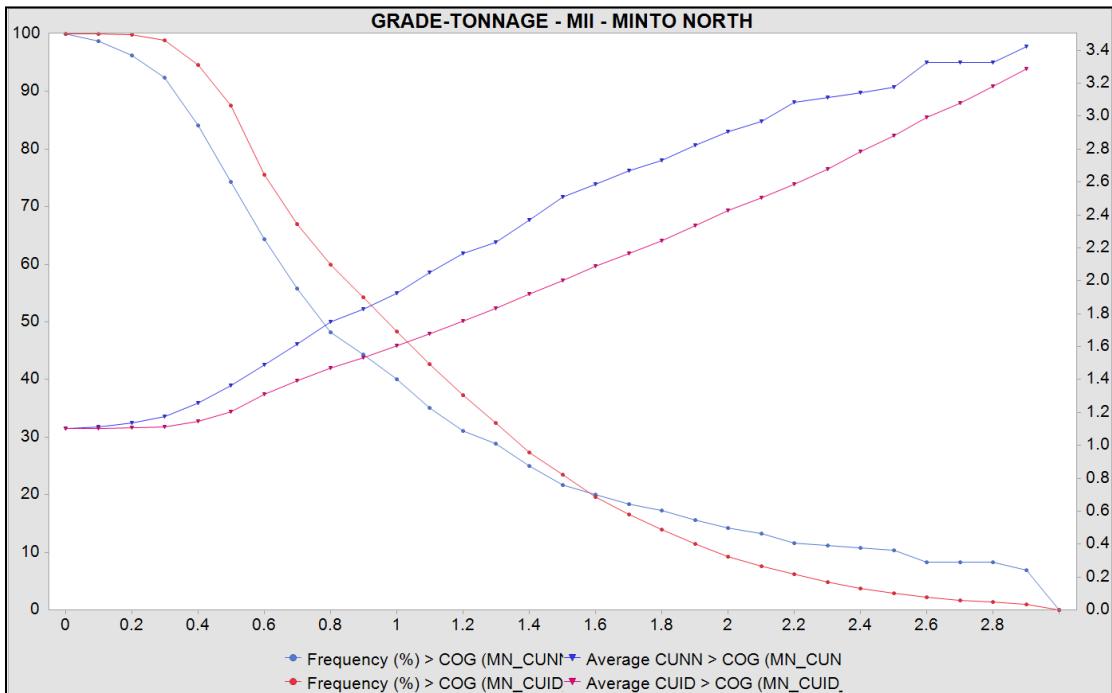

(Source: MMTS, 2025)

Figure 14-13 Grade-Tonnage Curve Comparison for Cu – Minto East Model

(Source: MMTS, 2025)

Figure 14-14 Grade-Tonnage Curve Comparison for Cu – Area 118 Model

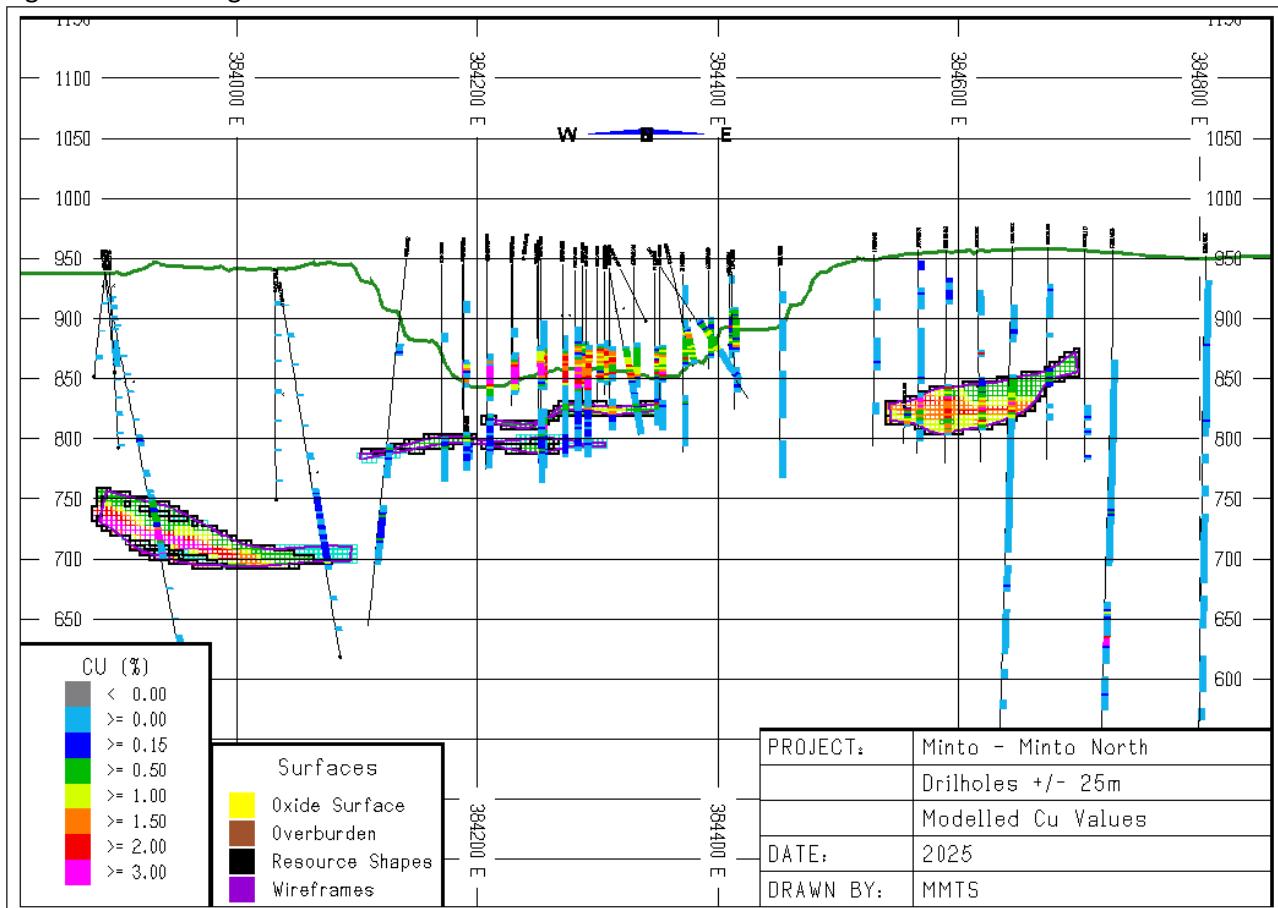

(Source: MMTS, 2025)

Figure 14-15 Grade-Tonnage Curve Comparison for Cu – Minto North Model

14.10.3 Visual Comparisons

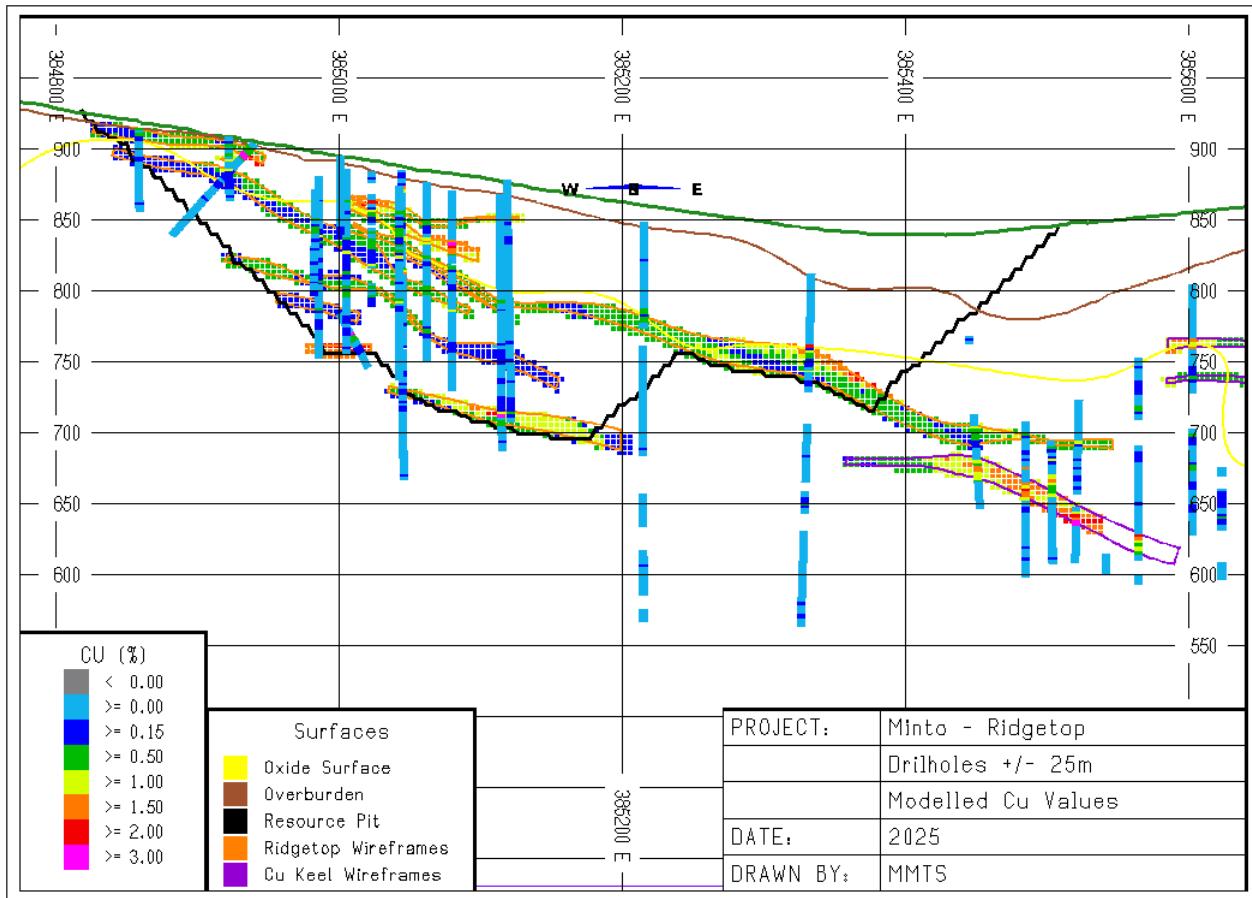

Further validation on local grade estimation has been done through visual comparisons of the modelled grades with the assay and composite grades in section, plan and through three-dimensional checks.

Figure 14-16 through

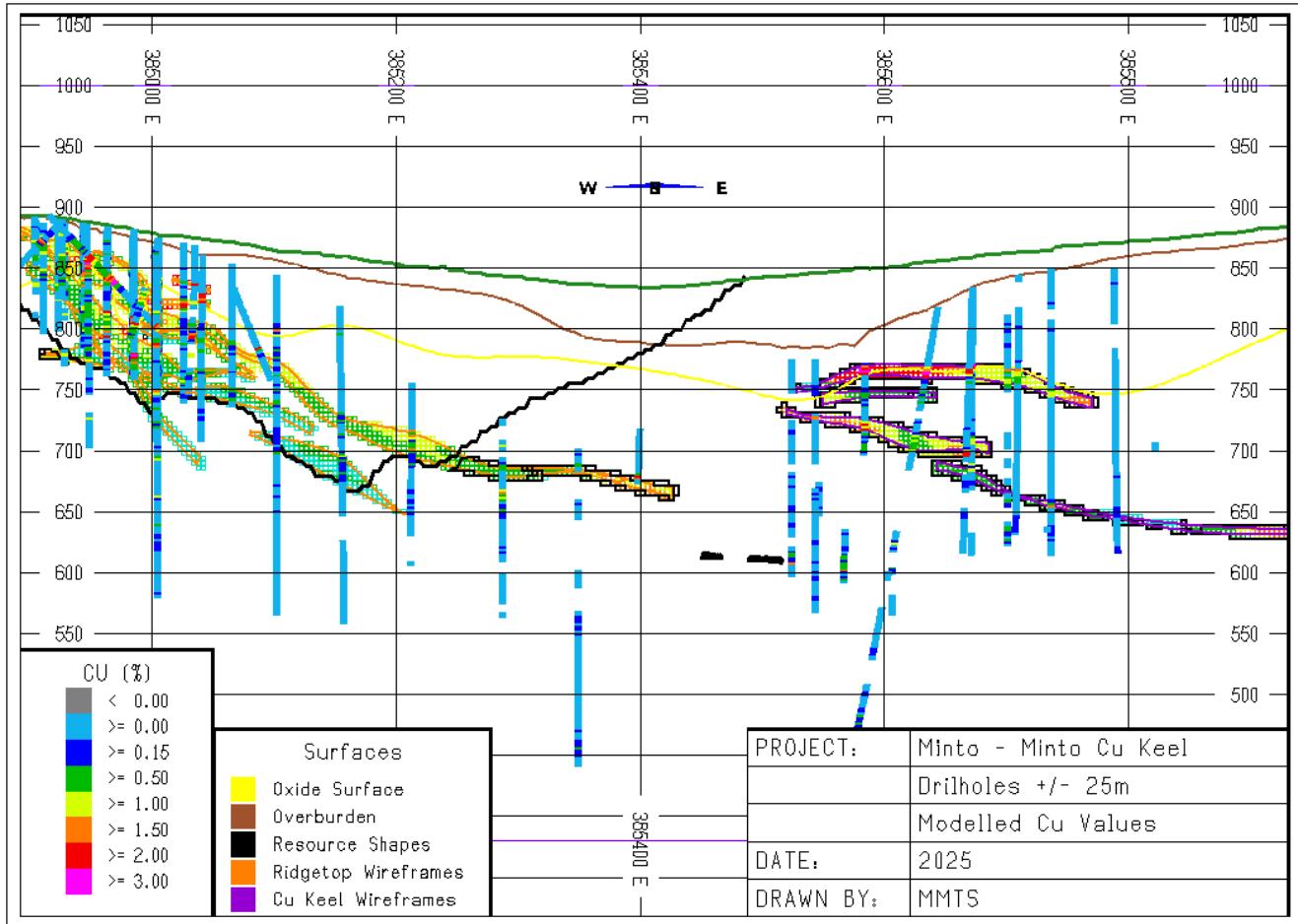

(Source: MMTS, 2025)

Figure 14-20 illustrate the block grades and composite grades through each area. Modelled ID² grades show similar grade distributions and values throughout the model to that of the drillhole data. On all sections, the drillhole data shown is ± 10 m of the section.

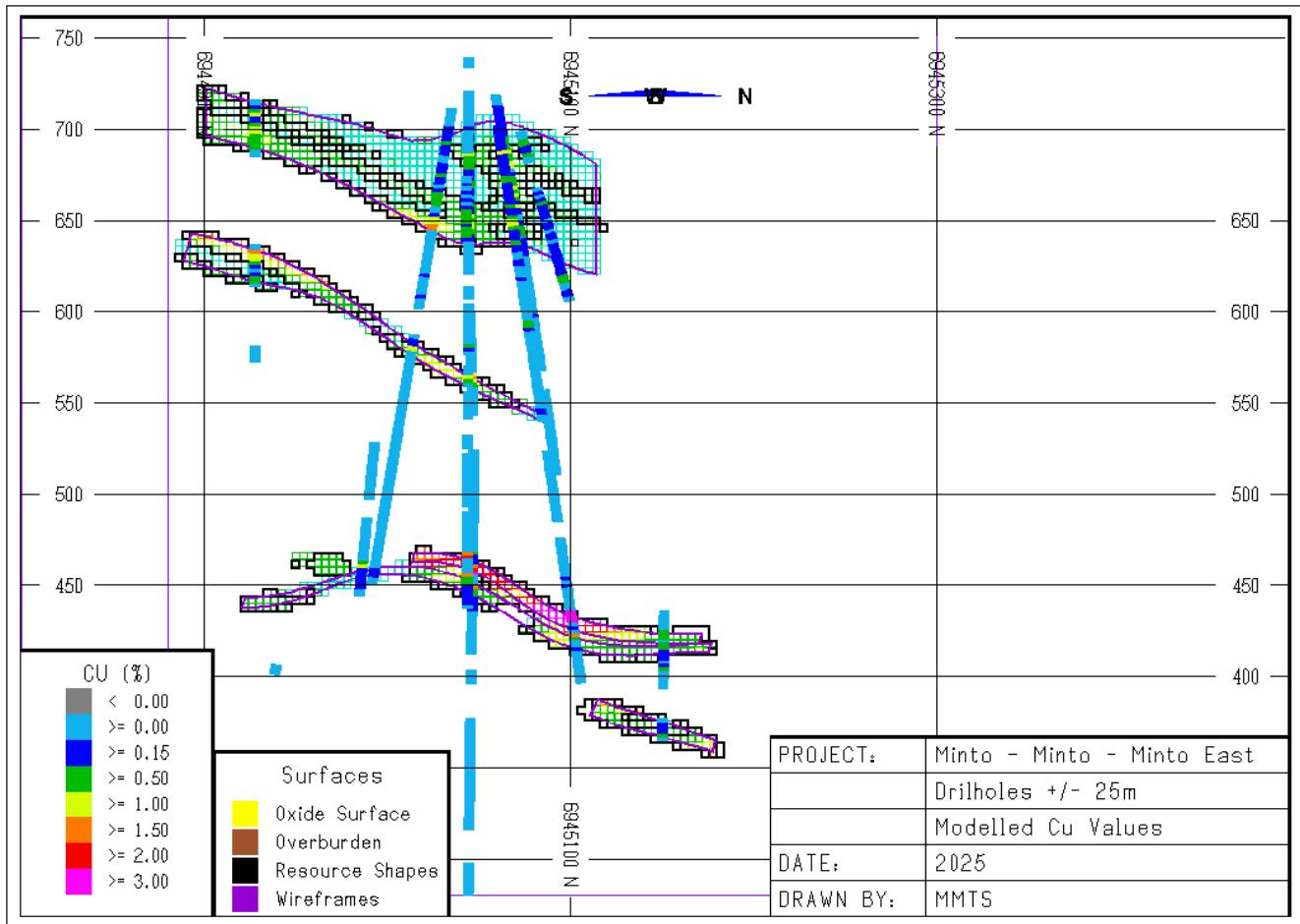
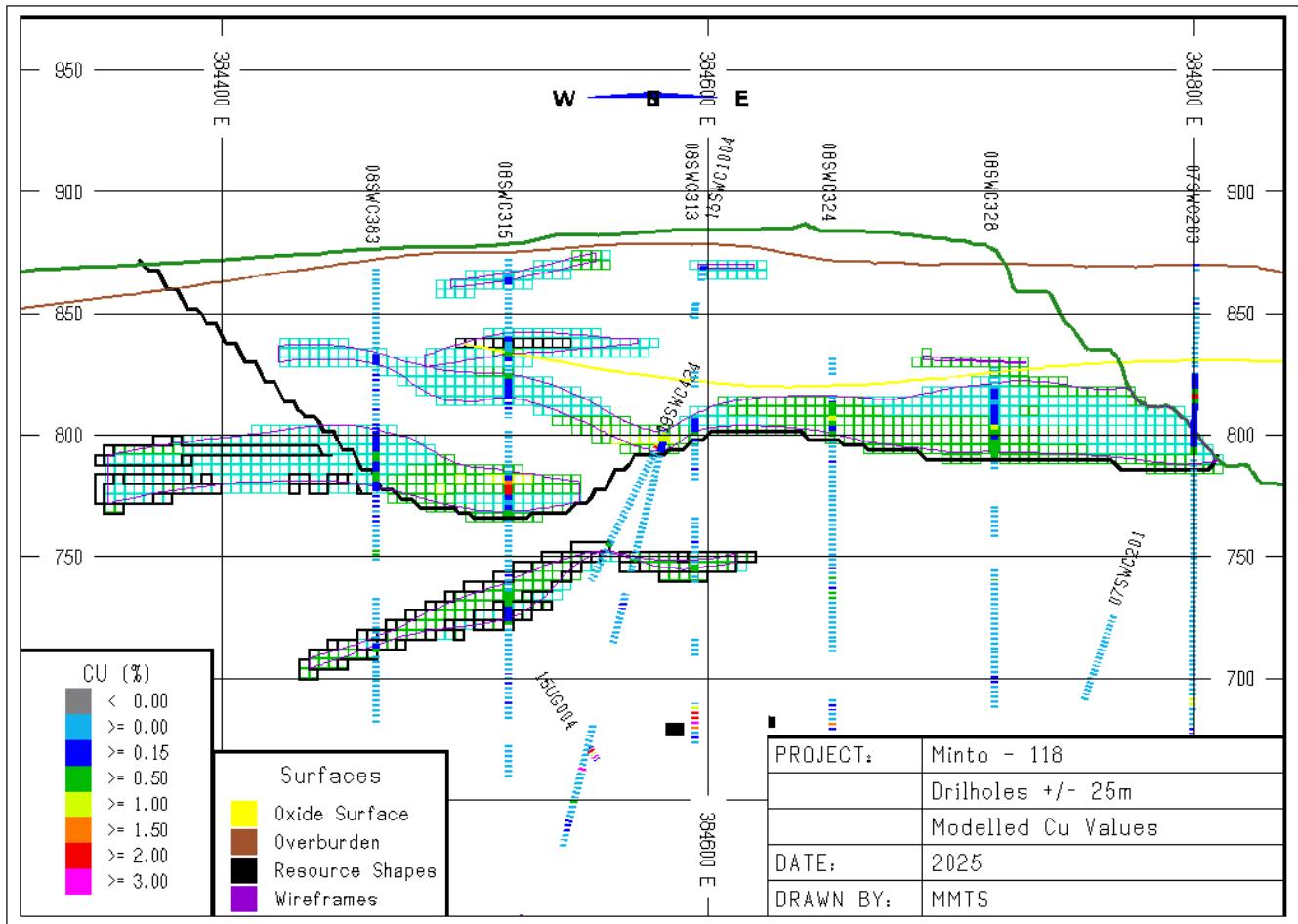
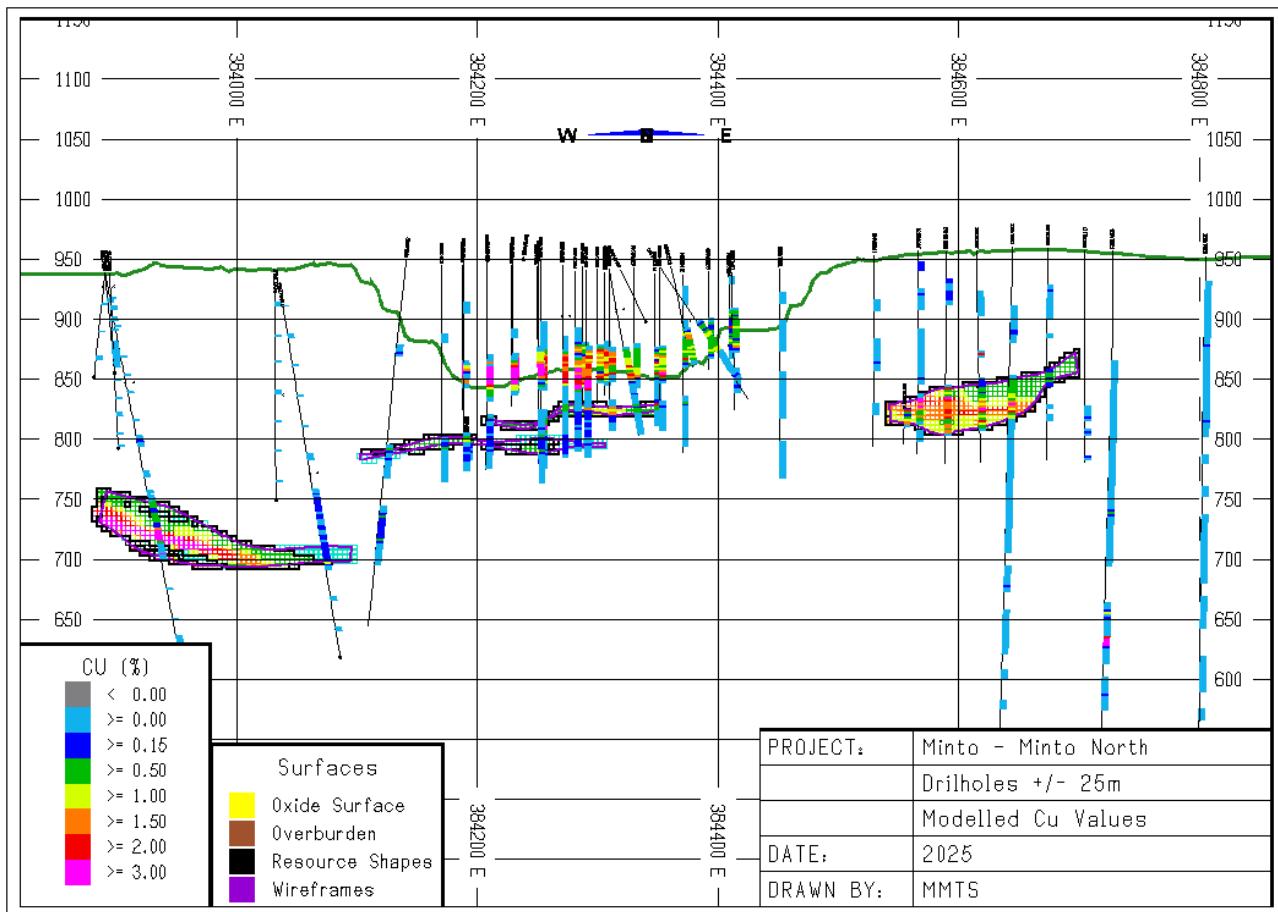

(Source: MMTS, 2025)

Figure 14-16 Cu Grade - Model Compared to Composites – Section 6943720N - Ridgetop


(Source: MMTS, 2025)


Figure 14-17 Cu Grade - Model Compared to Assays – 6943840 N - Copper Keel

(Source: MMTS, 2025)

Figure 14-18 Cu Grade - Model Compared to Assays – 385260 E – Minto East

(Source: MMTS, 2025)

Figure 14-20 Cu Grade - Model Compared to Assays – 6945948N - Minto North

14.11 Reasonable Prospects of Eventual Economic Extraction

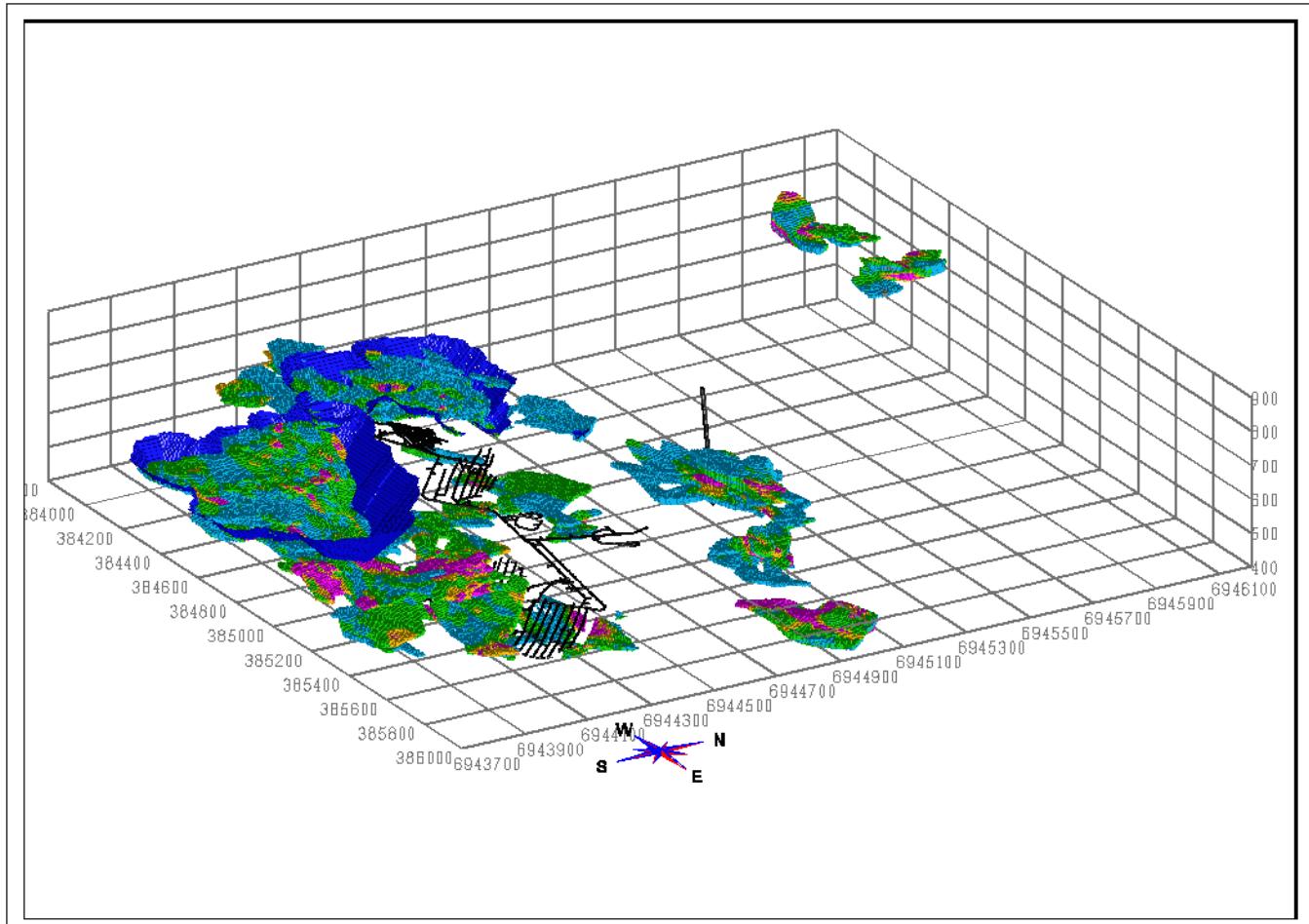
Open pits in the Area 118 and Ridgetop are created using Lerchs–Grossmann (LG) pit optimization, which has been done on a series of pits with varying price assumptions. The base case price, cost, smelter terms, foreign exchange and recoveries are summarized in **Table 14-31**. Underground resources are created using grade shells at a series of NSR cut-offs using the underground base case inputs also summarized in the table below.

Table 14-31: Summary of Base Case Economic Inputs

Parameter		Value and Units	
FOREX	US\$:CDN\$	0.72	
Metal Prices	Copper	4.00	\$US/lb
	Gold	2,000.00	\$US/oz
	Silver	23.00	\$US/oz
Recoveries	Copper	91	%
	Gold	72	%
	Silver	81	%
Payable	Copper	95	%
	Gold	88	%
	Silver	70	%
Treatment & Refining Costs	Cu TC	65.10	US\$/dmt con
	Cu RC	0.070	US\$/payable lb
	Au RC	5.25	US\$/payable oz
	Ag RC	0.42	US\$/payable oz
Transportation Costs		140.51	US\$/dmt
Royalty		1.5	%
On Site Costs	Mining Cost (OP)	4.10	CA\$/t mined
	Mining Cost (UG)	45.42	CA\$/t mined
	Milling Cost	30.00	CA\$/t milled
	G&A Cost	20.81	CA\$/t milled
RPEEE Criteria	Ridgetop and 118 open pit	45 degree slope	
	Underground	Cohesive Confining shapes	

The resulting NSR equation in Canadian dollars is:

$$\text{NSR} = (91\% * \text{CA\$}4.73 * \text{Cu\%} * 22.04626 + (72\% * \text{CA\$}2400.60 * \text{Augpt} + 81\% * \text{Ag\%} * 1.45)) / 31.10348$$


And the resulting Copper Equivalent (CuEq) equation is:

$$\text{CuEq} = \text{Cu\%} + 0.5859 * \text{Augpt} + 0.0059 * \text{Agpt}$$

The resource pit case chosen is the 100% NSR pit case for Ridgetop and the 100% case for Area 118. Cut-offs used for open pit and underground resource are CA\$30/t and CA\$75.42/t respectively, which is appropriate considering the above smelter terms, prices, a Processing cost of CD\$30.00/t, open pit mining costs of CA\$4.10/t mined and underground mining costs of CA\$45.42.

The resulting pit shape for “reasonable prospects of eventual economic extraction” is illustrated in (Source: MMTS, 2025)

Figure 14-21 with the NSR plotted for all blocks above cut-off.

(Source: MMTS, 2025)

Figure 14-21 3D View of the Resource Pits (blue) and NSR of Blocks Above CDN\$30/t

14.12 Factors That May Affect the Mineral Resource Estimate

Areas of uncertainty that may materially impact the Mineral Resource estimate include:

- Commodity price assumptions;
- Metal recovery assumptions; and
- Mining and processing cost assumptions.

There are no other known factors or issues known to the QP that materially affect the estimate other than normal risks faced by mining projects in the province in terms of environmental, permitting, taxation, socio-economic, marketing, and political factors.

14.13 Sensitivity of the Resource to Cut-off Grade

The following two tables summarize the sensitivity of the resource estimate to the cut-off grade for the open pit and underground resource respectively, with the base case cutoff highlighted. The resource has an effective date of January 22, 2025.

Table 14-32: Sensitivity of the Open Pit Resource to Cut-off Grade

Area	Class	Cutoff	ROM	In situ Grades						Metal		
		(CDN\$)	Tonnage	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (000lbs)	Au (oz)	Ag (oz)
Open Pit - All	Indicated	25	6,308,800	\$86.92	0.88	0.269	2.8	0.160	0.168	122,984	54,478	573,139
		30	6,084,748	\$89.11	0.90	0.274	2.9	0.151	0.163	120,304	53,665	560,419
		40	5,484,817	\$94.98	0.94	0.291	3.0	0.137	0.158	113,421	51,390	528,476
		50	4,740,554	\$102.83	1.00	0.317	3.2	0.128	0.158	104,297	48,331	484,255
		60	3,976,323	\$112.02	1.07	0.349	3.4	0.121	0.161	93,829	44,654	436,257
		70	3,275,243	\$122.13	1.15	0.387	3.7	0.117	0.169	83,160	40,797	390,306
		25	9,782,379	\$72.37	0.69	0.159	2.4	0.080	0.060	149,445	49,962	752,602
	Inferred	30	9,496,436	\$73.71	0.70	0.162	2.4	0.075	0.057	146,892	49,327	738,434
		40	8,427,131	\$78.58	0.74	0.173	2.6	0.067	0.055	137,542	46,949	691,886
		50	7,092,210	\$84.89	0.79	0.189	2.8	0.063	0.056	124,050	43,033	632,302
		60	5,527,275	\$93.39	0.87	0.210	3.1	0.060	0.058	105,522	37,330	549,716
		70	4,108,842	\$103.24	0.95	0.234	3.5	0.058	0.062	86,070	30,927	462,925

Notes to Table 14-32 and Table 14-33:

1. The MRE has been completed by Sue Bird of Moose Mountain Technical Services (MMTS).
2. Resources are reported using the 2014 CIM Definition Standards and were estimated using the 2019 CIM Best Practices Guidelines.
3. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.
4. Metal prices of US\$2000/oz Au, US\$23/oz Ag, US\$4.00lb Cu.
5. For the NSR calculations: a currency exchange rate of 0.72 US\$ per \$CA; 95% payable Cu, 88% payable Au and 70% payable Ag; offsite costs (refining, transport and insurance) of US\$256.18/dmt; royalties of 1.5% NSR.
6. Recoveries are as follows:
 - a. CuRec = 95.5%+1.07*CU%-113*ASCu/TCu, with a maximum of 98%
 - b. AuRec = 20.99*Augpt + 62.01, with a maximum of 95%
 - c. AgRec = 69.4+1.9*Aggpt, to a maximum of 85%
7. These inputs result in the following NSR and CuEq equations:

$$\text{NSR} = \text{CA\$4.73} * \text{CuRecov} * \text{Cu\%} * 22.0462 + (\text{CA\$2400.60} * \text{AuRecov} * \text{Augpt} + \text{CA\$21.45} * \text{AgRecov} * \text{Aggpt}) / 31.10348$$

$$\text{CuEq} = \text{NSR} / (\text{Cu\%} * \text{CuRecov} * 22.0462)$$
8. The Mineral Resource has been confined by a “reasonable prospects of eventual economic extraction” pit or underground shape using the 100% base case NSR for the Ridgetop and Area 118 open pits and by a confining shape for the underground.
9. Mining costs are CA\$4.10/tonne for open pit, CA\$45.42/tonne for underground, Processing costs are CA\$30/tonne milled, and G&A costs are CA\$20.81/tonne milled.
10. Pit slope angles are assumed at 45°.
11. The specific gravity of the deposit has been assigned based on domain as between 2.578 and 2.849 based on sg measurements in the Minto deposit.
12. Oxide Ratio = (ASCu) / (Total Copper)
13. Numbers may not add due to rounding.

Table 14-33: Sensitivity of the Underground Resource to Cut-off Grade

Area	Class	Cutoff	ROM	In situ Grades						Metal		
		(CDN\$)	Tonnage	NSR (CDN\$)	Cu (%)	Au (gpt)	Ag (gpt)	Ox Ratio	ASCu (%)	Cu (000lbs)	Au (oz)	Ag (oz)
Open Pit - Ridgetop Copper Keel	Indicated	25	5,905,591	\$87.84	0.90	0.278	2.9	0.166	0.176	116,590	52,841	546,823
		30	5,693,477	\$90.09	0.91	0.284	2.9	0.156	0.171	113,997	52,041	534,505
		40	5,120,518	\$96.21	0.95	0.303	3.1	0.142	0.166	107,345	49,817	503,763
		50	4,418,313	\$104.35	1.01	0.330	3.3	0.133	0.166	98,654	46,877	461,669
		60	3,719,455	\$113.61	1.08	0.363	3.5	0.125	0.169	88,953	43,409	417,346
		70	3,081,417	\$123.73	1.17	0.402	3.8	0.121	0.176	79,170	39,796	375,475
		25	4,709,746	\$81.27	0.78	0.212	3.0	0.116	0.092	81,238	32,071	455,780
	Inferred	30	4,540,853	\$83.26	0.79	0.216	3.1	0.107	0.087	79,516	31,578	445,275
		40	4,045,441	\$89.15	0.84	0.232	3.2	0.095	0.083	74,685	30,227	421,407
		50	3,488,279	\$96.25	0.89	0.253	3.5	0.088	0.083	68,767	28,340	394,771
		60	2,895,476	\$104.64	0.96	0.276	3.9	0.082	0.084	61,345	25,721	359,334
		70	2,304,217	\$114.89	1.04	0.304	4.3	0.076	0.086	53,060	22,491	320,776

The following factors, among others, could affect the Mineral Resource estimate: commodity price and exchange rate assumptions; pit slope angles; assumptions used in generating the LG pit shell, including metal recoveries, and mining and process cost assumptions.

The QP is not aware of any environmental, permitting, legal, title, taxation, socioeconomic, marketing, political, or other relevant factors that could materially affect the Mineral Resource estimate.

14.14 Risk Assessment

A description of potential risk factors is given in Table 14-34 along with either the justification for the approach taken or mitigating factors in place to reduce any risk.

Table 14-34: List of Risks and Mitigations/Justifications

#	Description	Justification/Mitigation
1	Classification Criteria	Based on Variography
2	Geologic Model	Interpolation confined to solids based on geology and grade
3	Metal Price Assumption	Based on 3 year trailing average
4	Capping	CPP, swath plots and grade-tonnage curves show model validates well with composite data throughout the grade distribution
5	Processing and Mining Costs	Same costs are used as for the mine planning pits, and are therefore conservative for a "reasonable prospect of eventual economic extraction" assessment
6	Previous underground mining	Accounted for in modelled shapes

15.0 Mineral Reserve Estimates

Not Applicable.

16.0 Mining Method

Not Applicable.

17.0 Recovery Methods

Not Applicable.

18.0 Project Infrastructure

Not Applicable.

19.0 Market Studies and Contracts

Not Applicable.

20.0 Environmental Studies, Permitting and Social or Community Impact

Not Applicable.

21.0 Capital and Operating Costs

Not Applicable.

22.0 Economic Analysis

Not Applicable.

23.0 Adjacent Properties

No references to any adjacent properties other than general regional geology comments are used in this report. The mineral resource estimation and exploration targets described in this report are based solely on work done on the Minto Property and are not influenced in any way by any potential mineralization on adjacent properties.

24.0 Other Relevant Data and Information

The QPs are not aware of any relevant information regarding the Minto Project that has not been disclosed in this report.

25.0 Interpretation and Conclusions

25.1 Geology

Interpretation of the main lithologies and alteration types is considered appropriate for this level of study. The geologic modelling has been used to inform the mineralized shapes.

25.2 Data Verification

Data has been verified by assay certificate checks, a site visit and statistical validation of historic data. All drillhole assay data that has been used for the Mineral Resource Estimates is considered to be validated to a level sufficient for the resource material as classified.

25.3 Metallurgical Testwork

The recoveries used for Resource estimate are reasonable for this level of study based on the metallurgical testing to date.

25.4 Resource Estimate

In the opinion of the QP the block model resource estimate and resource classification reported herein are a reasonable representation of the global copper, gold, and silver found in the Minto project deposits. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into mineral reserves.

26.0 Recommendations

26.1 Sample Preparation, Analyses and Security

The QP recommends the following for future drilling campaigns:

- The use of certified reference materials (CRMs) for Cu, Au, and Ag chosen to represent all expected grade ranges.
- The analysis of the small sample set of field duplicates in Minto East implies potential significant low bias to the gold samples in the assay database. It is suggested that Minto investigate this finding with re-assay of core and check assays.
- CRM and check assay results from 2019 and 2020 indicate that there may be a negative bias to silver values. It is recommended to continue to monitor this potential bias.
- There is a possible high bias in the copper results in years 2009 through 2011 indicated by the CRM results. It is recommended further check assays of pulps and quarter-core samples be conducted to investigate.

26.2 Data Verification

The QP recommends the following for the current assay database:

- MMTS recommends that the Minto database include corrections made to the data and exporting process to ensure the correct assay method is used and that a standardized process is established for QAQC analyses. Re-assays of failed values should be added to the database and additional check assays should be done based on comparisons with Standards.

26.3 Metallurgy

While the metallurgical testwork is extensive, there is still not enough information to develop a strong operating plan for POX mineralization. A geometallurgical inspired testwork program is recommended to investigate improved recovery options for POX material. This program is expected to cost approximately \$1M.

- Phase 1 variability sulphidation testwork across copper grade distribution and speciation.
 - Quantitative Mineralogical analysis on multiple samples of possible geometallurgical zones to determine the definition of each zone.
 - Test the potential impact of sulphidation on a blend of POX and sulfides, as the feed to the mill will be a blend of each and there is risk that the sulphidation reagents impact the primary and secondary sulfide flotation.
- Geomet characterization study including assays and quantitative mineralogy to identify the potential CuOx variability.
- Phase 2 geometallurgical inspired testwork program

- Define geometallurgical zones with geology and metallurgy departments.
- Quantitative Mineralogical analysis on multiple samples of each geometallurgical zone to determine the definition of each zone.
- Baseline flotation test on each sample using standard mill conditions.
- Mineralogy conducted on flotation concentrates and tailings to understand the recovery by mineral and determine if there is any pacification of sulphide minerals.
- Grind vs recovery vs reagent scheme on all samples.
- Bottle roll leach tests on each of the samples to understand the leaching characteristics of the mineralized material.

26.4 Exploration and Resource

Following the success of the 2021–2022 drilling campaign, a two-phase drill program is recommended to advance both resource definition and near-mine exploration at the Minto Mine:

1. Phase One – Resource Expansion Drilling (20,000–30,000 m):
 - A focused drilling program is proposed to define and expand mineralization in key target areas including Minto North west lens, Minto East and Copper Keel Zones. Initial drilling budget would approximate ~\$10M.
2. Phase Two – Conversion Drilling (50,000 m – 100,000):
 - A second-phase campaign should focus on detailed conversion drilling. This should be informed by financial models and mine plan sequencing studies to focus the conversion of Inferred to Indicated resources at high priority location; either open pit zones, Ridgetop and 118, or high grade underground zones, Minto East and Copper Keel. This second phase of drill would require a larger budget of \$15M-\$30M.
3. Structural Study Recommendations:
 - To support ongoing exploration and improve resource modeling, it is recommended that a detailed structural geology study be undertaken with the following objectives:
 - Characterize the influence and displacement patterns of late northwest-trending brittle faults that locally offset mineralization.
 - Interpret the geometry and controls of shallowly dipping mineralized lenses, particularly in underexplored areas.
4. Regional Exploration and Application of Structural Models:
 - Exploration activities focused on the regional claim blocks is recommended to advance the target pipeline. Exploration activities should include regional geophysical surveys, property-scale geochemical surveys as well as surface mapping and eventual drilling if targets warrant advancement.
 - Insights from the structural studies should be applied across the district to refine target generation and improve the predictive power of the geological model for future regional

exploration efforts. The regional district represents 26,000 ha of underexplored land package.

5. Geological Modelling:

- A detailed geological model is recommended to help inform the resource modelling and future drill planning and target generation.

26.5 Exploration Program and Budget

It is recommended to continue ground based geochemical and geophysical studies as well as in-fill and exploration drilling at the Minto property. Additional exploration across the regional properties is also recommended to continue to evaluate the district potential and to develop a target pipeline for continued district advancement. The recommended exploration budget for the work is summarized in the table below.

Table 26-1: Recommended Exploration Budget

Exploration Item	Cost (CDN\$)
Geochemical	\$500,000
Geophysics – IP, EM	\$500,000
Drilling – Phase 1	9,000,000
Total	\$10,000,000
Regional Exploration	
Geochemical	\$500,000
Geophysics – IP, EM	\$1,000,000
Mapping	\$500,000
Total	\$2,000,000

27.0 References

ALS Global.com. "Schedule of Services and Fees, Geochemistry". Pdf document available online.

Aurora Geosciences, 2019, *Competent Person's Report Minto Mine-Yukon Territory, Canada*. Prepared for Pembridge Resources, PLC.

Austring, Fairman and Fetke, 2025. Claim # 2 Letter – Claim Ownership – Selkirk Mine Property – 843093 Yukon Inc. 7pp.

Barrios, A. and Newton, G. 2009. *2009 Geophysical Report on the WS Claim Group*, Yukon Assessment Report #095221. 65 pages.

Bath, A.B., Cooke, D.R., Friedman, R.M., Faure, K., Kamenetsky, V.S., Tosdal, R.M. and Berry, R.F., 2014: *Mineralization, U-Pb geochronology, and stable isotope geochemistry of the Lower Main zone of the Lorraine deposit, north-central British Columbia: A replacement-style alkalic Cu-Au porphyry*. Economic Geology, 109(4): 979-1004.

BD Resource Consulting, Inc., (2015). *Minto Fireweed Estimation Reliability by Drill Spacing*. Issue Brief. Larkspur, CO: n.p. 2015.

Canadian Institute of Mining (2014). *CIM Definition Standards*.

Canadian Institute of Mining, Metallurgy and Petroleum (CIM), 2014: *CIM Standards for Mineral Resources and Mineral Reserves, Definitions and Guidelines*: Canadian Institute of Mining, Metallurgy and Petroleum, May, 2014.

Canadian Institute of Mining, Metallurgy and Petroleum (CIM), 2019: *Estimation of Mineral Resources and Mineral Reserves, Best Practice Guidelines*: Canadian Institute of Mining, Metallurgy and Petroleum, November 29, 2019.

Canadian Securities Administrators (CSA), 2011: *National Instrument 43-101, Standards of Disclosure for Mineral Projects*, Canadian Securities Administrators.

Canam, T.W. 1982. *Geological and Geochemical Report on the Poon Claim Group*, Yukon Assessment Report #091087. 15 pages.

Capstone Mining Corp. (2017). *2016 Year-End Reporting of Mineral Resources and Mineral Reserves*. Vancouver: n.p., January 1, 2017.

Capstone Mining Corp. (2016). *Minto East Mineral Resources Update*, June 2016. Vancouver: n.p., July 15, 2016.

Colpron, M., Crowley, J.L., Gehrels, G., Long, D.G.F., Murphy, D.C., Beranek, L. and Bickerton, L., 2015. *Birth of the northern Cordilleran orogen, as recorded by detrital zircons in Jurassic synorogenic strata and regional exhumation in Yukon*. Lithosphere, 7(5): 541-562.

Dirom, G. and Foster, J. 1971. *Geochemical Report Taslar Group of Mineral Claims*, Yukon Assessment Report #061113. 19 pages.

Doherty, R. Allan., 2008. *Assessment Report on the ICE Claims*, Yukon Assessment Report #095008. 62 pages.

Doherty, R. Allan., 2008. *Assessment Report on the WS Total Claims Target Evaluation Program Carmacks Area Yukon*, Yukon Assessment Report #094984. 230 pages.

EBA Engineering Consultants. 1997. *Minto Mine - 1996 Geotechnical Drilling Program Minto Explorations Ltd. Report* prepared for Minto Explorations Ltd. January.

Exploration and Geology 2016, K.E. MacFarlane and L.H. Weston (eds.), *Yukon Geological Survey*, p. 117-140.

Golder Associates Ltd., 2015a. *Geotechnical Characterization of Existing and Proposed Longhole Open Stopes Mining Area*. July 30, 2015.

Golder Associates Ltd., 2015b. *Minto Mine Underground Reserve Update Geotechnical Input*. July 31, 2015. Golder Associates Ltd., 2016. Minto East – Revised Longhole Open Stopes Stability. January 8, 2016.

Gorday, S.P. and Ryan, J.J. 2005: “*Geology, Stewart River area*”, Geological Survey of Canada, Open File 4970.

Guardia, F.J.L. 1972. *Report on a Geochemical Survey on the WET Claims*, Yukon Assessment Report # 060137. 9 pages.

Hart, C.J.R., 1997: *A Transect Across Northern Stikinia: Geology of the Northern Whitehorse Map Area, Southern Yukon Territory (105D/13-16)*. Indian & Northern Affairs Canada, Yukon Region, Exploration & Geological Services Division.

Hart, C.J.R. and Radloff, J., 1990a: *Geology of Whitehorse, Alligator Lake, Fenwick Creek, Carcross and part of Robinson map areas (105D/11, 6, 3, 2, & 7)*. Indian and Northern Affairs Canada, Northern Affairs, Yukon Region.

Hart, C.J.R. and Radloff, J.K., 1990b: *Geology of Whitehorse, Alligator Lake, Fenwick Creek, Carcross and Part of Robinson Map Areas (105D/11, 6, 3, 2, & 7)* Canada Indian Northern Affairs Program Yukon Region Exploration Geological Services Division Yukon Territory, Canada/Yukon Subsidiary Agreement on Mineral Resources, Exploration and Geological Services Division.

Haynes, D., Cross, K.C., Bills, R.T., and Reed, M/H, 1995: “*Olympic Dam ore genesis; a fluid-mixing model*”, *Economic Geology* (1995) 90(2), Society of Economic Geologists, pp. 281-307.

Heberlein, D., 2015, *A Review of the Analytical and Quality Control Procedures at the Minto Mine, Yukon*.

Hood, S. B., 2008: "Mid-crustal Cu-Au Mineralisation during Episodic Pluton Emplacement, Hydrothermal Fluid Flow, and Ductile Deformation at the Minto Deposit, YT, Canada", MSc Thesis, Faculty of Graduate Studies, University of British Columbia.

JDS Energy & Mining Inc. 2021, NI 43-101 Preliminary Economic Assessment Technical Report, Minto Yukon, Canada. Effective day March 31, 2021.

Kikuchi, Toru. 1970. *Geological and Geochemical Report on BF Mineral Claims (1 to 8 inclusive) Group, Yukon Assessment Report # 060204.* 37 pages.

Klohn Crippen Berger. 2013. *Minto Project Tailings Lab Testing.* Letter report submitted to Capstone Mining Corporation, January

Kirkham Geosystems Ltd. (2015). *Minto Mine Resource Update and Report, Minto East and Minto East 2.* Vancouver: n.p., August 2015.

Kovacs, N., Allan, M.M., Zagorevski, A., Milton, J.E. and Hart, C.J.R., 2017. "New geological insights into the Carmacks Copper Cu-Au-Ag deposit, central Yukon (Yukon MINFILE 115I 008)". In: Yukon

Kovacs, N., 2018: "Genesis and Post-ore modification of the migmatized Carmacks Copper Cu-Au-Ag porphyry deposit, Yukon, Canada". MSc Thesis, University of British Columbia, 2018.

Kovacs, N., Allan, M. M., Crowley, J. L., Colpron, M., Hart, C. J., Zagorevski, A., & Creaser, R. A. (2020). *Carmacks Copper Cu-Au-Ag Deposit: Mineralization and Postore Migmatization of a Stikine Arc Porphyry Copper System in Yukon, Canada.* Economic Geology, 115(7), 1413-1442.

Leblanc, E. and Joy, R.J. 1980. *1980 Geological and Geochemical Report on the Moon Claim Group, Yukon Assessment Report #090771.* 29 pages.

Mercer, B., and Sagman, J., 2012: "Phase VI Preliminary Feasibility Report, Minto Mine, Minto Explorations Ltd", In-house report, Minto Explorations Ltd.

Mercer, B., and Sagman, J., 2012: "Preliminary Feasibility Study Technical Report, Minto Explorations Ltd.", In-house report, Minto Explorations Ltd.

Mihalynuk, M.G., Zagorevski, A., Joyce, N.L., and Creaser, R.A, 2016: *Age of magmatism and mineralization at the Star (Sheslay, Copper Creek) copper porphyry prospect: Inception of the Late Triassic mineralized arc.* Geological Fieldwork 2015, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2016-1, 1(2016): 65-75.

Minto Explorations Ltd., 1997. *Co-operation Agreement concerning the Minto Project made the 16th day of September, 1997.* 21p.

Minto Explorations Ltd., 2012. *Minto Phase VI Preliminary Feasibility Study Technical Report.*

Minto Explorations Ltd. 2016. *Mineral Resource and Reserve Self-Assessment Report.* Report. Yukon: n.p., November 25, 2016.

Minto Explorations Ltd. 2017. *Annual QAQC Report*, 2017.

Minto Explorations Ltd. 2017. *Annual QAQC Report*, 2017.

Minto Explorations Ltd., 2020. *Minto Mine Reclamation and Closure Plan*, version 2020-01. November, 2020.

Minto Metals Corp., 2022. *Annual Information (AIF)*

Minto Mine, 2016. *Underground Ground Control Plan*. December 2016

Minto Mine, 2016a. *Spill Contingency Plan*. February 2016.

Minto Mine, 2016b. *Emergency Response Plan*. March 2016.

Minto Mine, 2017 *Underground Mine Development and Operations Plan*. January 2017

Minto Mine, *Mine Development and Operations Plan Area 2 Stage 3 Pit Design change*. January 2017

Mortensen, J.K., 1992: *Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana terrane*, Yukon and Alaska. *Tectonics*, 11(4): 836-853.

Mullan, Ashton. 1974. *Report on the Magnetometer Survey of the WET Claim Group*, Yukon Assessment Report #060927. 8 pages.

Powell, T., 2023, "Revocation of Restricted Operating Conditions", Letter to Minto Metals CEO from YK Government, May 15, 2023.

Rollinson, H.R., 2014: *Using geochemical data: evaluation, presentation, interpretation*. Routledge. 384 pages.

Ryan, Shawn, 2007. *Geochemical Report ICE 1-4*, Yukon Assessment Report #094841. 16 pages.

Schulze, C, 2008: "Assessment Report, Geological and Geochemical Surveying on the DEL Claim Block, Northern Tiger Resources Inc." Assessment Report #095064, filed with the Whitehorse Mining Recorder, Dept. of Energy and Mines, Government of Yukon.

Schulze, C, 2008: "Assessment Report, Geological and Geochemical Surveying on the MEL Claim Block, Northern Tiger Resources Inc." Assessment Report #095063, filed with the Whitehorse Mining Recorder, Dept. of Energy and Mines, Government of Yukon.

Schulze, C., 2009: "Assessment Report, Geological and Geochemical Surveying on the BOND Claim Block, Northern Tiger Resources Inc." Filed with the Whitehorse Mining Recorder, Dept. of Energy and Mines, Government of Yukon.

Schulze, C., 2019: "Competent Person's Report: Minto Mine – Yukon Territory, Canada". Prepared for Pembridge Resources plc. Filed to support a listing on the London Stock Exchange (LSE).

Selkirk First Nation, 2025 – *Letter Of Intent - Proposed Acquisition of the Mine Assets from 843093 Yukon Inc. ("BuyCo") by Venerable Ventures Ltd. ("VLV")*. 10p

SRK Consulting, 2008, *Technical Report Minto Mine, Yukon*.

SRK Consulting, 2009, *Minto Phase IV Pre-Feasibility Technical Report*.

SRK Consulting, 2009. *Pre-feasibility Geotechnical Evaluation Phase IV*. December, 2009.

SRK Consulting 2011, *Minto Phase V Preliminary Study Technical Report*.

SRK Consulting. 2012a. *Minto Mine – Detailed Review of Foundation Performance at Select Mine Waste Facilities and Main Pit South Wall*. Report prepared for Minto Explorations Ltd. November

SRK Consulting. 2012b. *Minto Mine – Detailed Review of Foundation Performance at the South Waste Dump and Stability of the Main Pit South Wall*. Report prepared for Minto Explorations Ltd c/o Capstone Mining Corp. November

SRK Consulting (Canada) Inc. (2015). *Minto MSD Resource Update 2015. Technical memorandum*. Vancouver: n.p., July 2, 2015.

SRK Consulting (Canada) Inc. (2016). *Area 2 Deep Resource Estimation*.

SRK Consulting (Canada) Inc. (2017). *Copper Keel Underground Resource Estimation. Technical memorandum*. Vancouver: 16 p., March 7, 2017.

Smith, I., & Bursa, C., 2025. *Minto Mine 2024 Annual Report*. Report prepared for Government of Yukon Assessment and Abandoned Mines, March 31, 2025.

Supreme Court of Yukon, 2025. *Order Approval and Vesting Order June 16, 2025*. 8p.

Tafti, R. and Mortensen, J.K., 2003: *Early Jurassic porphyry (?) copper (-gold) deposits at Minto and Williams Creek, Carmacks copper belt, western Yukon*. Yukon Exploration and Geology: 289- 303.

Tempelman-Kluit, D., 1984: Geology, Laberge (105E) Carmacks (115I), Yukon Territory. *Geological Survey of Canada, Open File 1101*.

Wilson, A.J., Cooke, D.R., Harper, B.J., and Deyell, C.L., 2007: *Sulfur isotope zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkali porphyry gold-copper deposits*. Mineralium Deposita, 42(5): 465-487.

Yukon Geology Survey, 2018: YGSIDS, website at <http://data.geology.gov.yk.ca/>. Energy, Mines & Resources, Government of Yukon.

Yukon Geological Survey, 2018: Web map Gallery, website at http://www.geology.gov.yk.ca/Web_map_gallery.html. Energy, Mines & Resources, Government of Yukon.

Yukon Mining Recorder, 2018: Website at <http://www.yukonminingrecorder.ca/>. Energy, Mines & Resources, Government of Yukon.

[YG] Government of Yukon, Energy Mines and Resources, 2013. *Reclamation and Closure Planning for Quartz Mining Projects: Plan Requirements and Closure Costing Guidance*.

APPENDIX A - List of Claims

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC47182	APEX	1	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47183	APEX	2	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47184	APEX	3	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47185	APEX	4	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47186	APEX	5	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47187	APEX	6	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47188	APEX	7	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47189	APEX	8	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47190	APEX	9	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47191	APEX	10	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47194	APEX	13	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47195	APEX	14	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47196	APEX	15	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47198	APEX	17	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47199	APEX	18	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47200	APEX	19	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47201	APEX	20	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47202	APEX	21	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47203	APEX	22	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47204	APEX	23	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47205	APEX	24	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47206	APEX	25	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47207	APEX	26	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47208	APEX	27	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47192	APEX	11	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47193	APEX	12	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC47197	APEX	16	843093 Yukon Inc - 100%	2026-04-02	Active	115I11
YC60218	BC	35	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60219	BC	36	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60220	BC	37	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60221	BC	38	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60222	BC	39	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60223	BC	40	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60224	BC	41	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60225	BC	42	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60226	BC	43	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60227	BC	44	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC60228	BC	45	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60229	BC	46	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60230	BC	47	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60231	BC	48	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60232	BC	49	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60233	BC	50	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60248	BC	65	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60249	BC	66	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60250	BC	67	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60251	BC	68	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60252	BC	69	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60253	BC	70	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60254	BC	71	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60255	BC	72	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60256	BC	73	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60257	BC	74	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60258	BC	75	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60259	BC	76	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60260	BC	77	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60261	BC	78	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60262	BC	79	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60263	BC	80	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60264	BC	81	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60265	BC	82	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60266	BC	83	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60267	BC	84	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60268	BC	85	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60269	BC	86	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60270	BC	87	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60271	BC	88	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60272	BC	89	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60273	BC	90	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60274	BC	91	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60275	BC	92	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60276	BC	93	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60277	BC	94	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60278	BC	95	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60279	BC	96	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60280	BC	97	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC60281	BC	98	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60282	BC	99	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60283	BC	100	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60284	BC	101	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60285	BC	102	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60286	BC	103	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60287	BC	104	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60288	BC	105	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60289	BC	106	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60290	BC	107	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60291	BC	108	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60292	BC	109	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60293	BC	110	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60294	BC	111	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60295	BC	112	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60296	BC	113	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60297	BC	114	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60298	BC	115	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60299	BC	116	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60300	BC	117	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60301	BC	118	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60302	BC	119	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60303	BC	120	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60304	BC	121	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60305	BC	122	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60306	BC	123	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60307	BC	124	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60308	BC	125	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60309	BC	126	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60310	BC	127	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60311	BC	128	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60312	BC	129	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60313	BC	130	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60314	BC	131	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60315	BC	132	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60316	BC	133	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60317	BC	134	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60318	BC	135	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60319	BC	136	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC60320	BC	137	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60321	BC	138	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60322	BC	139	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60323	BC	140	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60324	BC	141	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60325	BC	142	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60326	BC	143	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60327	BC	144	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC66307	BOND	1	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66308	BOND	2	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66309	BOND	3	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66310	BOND	4	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66311	BOND	5	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66312	BOND	6	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66313	BOND	7	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66314	BOND	8	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66315	BOND	9	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66316	BOND	10	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66317	BOND	11	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66318	BOND	12	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66319	BOND	13	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66320	BOND	14	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66321	BOND	15	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66322	BOND	16	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66323	BOND	17	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66324	BOND	18	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66325	BOND	19	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66326	BOND	20	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66327	BOND	21	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66328	BOND	22	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66329	BOND	23	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66330	BOND	24	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66331	BOND	25	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66332	BOND	26	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66333	BOND	27	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66334	BOND	28	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66335	BOND	29	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66336	BOND	30	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66337	BOND	31	843093 Yukon Inc - 100%	2026-10-18	Active	115I13

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC66338	BOND	32	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66339	BOND	33	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66340	BOND	34	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66341	BOND	35	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66342	BOND	36	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66343	BOND	37	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66344	BOND	38	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66345	BOND	39	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66346	BOND	40	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66347	BOND	41	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66348	BOND	42	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66349	BOND	43	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66350	BOND	44	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66351	BOND	45	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66352	BOND	46	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66353	BOND	47	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66354	BOND	48	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66355	BOND	49	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66356	BOND	50	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66357	BOND	51	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66358	BOND	52	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66359	BOND	53	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66360	BOND	54	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66361	BOND	55	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66362	BOND	56	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66363	BOND	57	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66364	BOND	58	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66365	BOND	59	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66366	BOND	60	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66367	BOND	61	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66368	BOND	62	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66369	BOND	63	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66370	BOND	64	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66371	BOND	65	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66372	BOND	66	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66373	BOND	67	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66374	BOND	68	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66375	BOND	69	843093 Yukon Inc - 100%	2026-10-18	Active	115I13
YC66376	BOND	70	843093 Yukon Inc - 100%	2026-10-18	Active	115I13

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61693	DEF	1	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61693	DEF	1	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61694	DEF	2	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61694	DEF	2	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61695	DEF	3	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61695	DEF	3	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61696	DEF	4	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61696	DEF	4	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61697	DEF	5	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61697	DEF	5	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61698	DEF	6	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61698	DEF	6	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61699	DEF	7	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61699	DEF	7	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61700	DEF	8	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61700	DEF	8	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61701	DEF	9	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61701	DEF	9	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61702	DEF	10	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61702	DEF	10	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61703	DEF	11	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61703	DEF	11	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61704	DEF	12	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61704	DEF	12	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61705	DEF	13	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61705	DEF	13	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61706	DEF	14	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61706	DEF	14	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61707	DEF	15	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61707	DEF	15	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61708	DEF	16	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61708	DEF	16	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61709	DEF	17	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61709	DEF	17	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61710	DEF	18	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61710	DEF	18	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61711	DEF	19	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61711	DEF	19	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61712	DEF	20	843093 Yukon Inc - 100%	2026-03-01	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61712	DEF	20	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61713	DEF	21	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61713	DEF	21	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61714	DEF	22	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61714	DEF	22	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61715	DEF	23	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61715	DEF	23	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61716	DEF	24	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61716	DEF	24	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61717	DEF	25	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61717	DEF	25	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61718	DEF	26	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61718	DEF	26	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61719	DEF	27	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61719	DEF	27	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61720	DEF	28	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61720	DEF	28	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61721	DEF	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61721	DEF	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61722	DEF	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61722	DEF	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61723	DEF	31	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61723	DEF	31	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61724	DEF	32	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61724	DEF	32	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61978	DEF	33	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61978	DEF	33	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61979	DEF	34	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61979	DEF	34	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61980	DEF	35	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61980	DEF	35	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61981	DEF	36	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61981	DEF	36	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61982	DEF	37	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61982	DEF	37	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61983	DEF	38	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61983	DEF	38	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 61984	DEF	39	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61984	DEF	39	843093 Yukon Inc - 100%	2026-03-01	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61985	DEF	40	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61985	DEF	40	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61986	DEF	41	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61986	DEF	41	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61987	DEF	42	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61987	DEF	42	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61988	DEF	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61988	DEF	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61989	DEF	44	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61989	DEF	44	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61990	DEF	45	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61990	DEF	45	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61991	DEF	46	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61991	DEF	46	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61992	DEF	47	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61992	DEF	47	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61993	DEF	48	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61993	DEF	48	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61994	DEF	49	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61994	DEF	49	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61995	DEF	50	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61995	DEF	50	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61996	DEF	51	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61996	DEF	51	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61997	DEF	52	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61997	DEF	52	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61998	DEF	53	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61998	DEF	53	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61999	DEF	54	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61999	DEF	54	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62000	DEF	55	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62000	DEF	55	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62001	DEF	56	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62001	DEF	56	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62002	DEF	57	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62002	DEF	57	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62003	DEF	58	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62003	DEF	58	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62004	DEF	59	843093 Yukon Inc - 100%	2026-03-01	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 62004	DEF	59	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62005	DEF	60	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62005	DEF	60	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62006	DEF	61	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62006	DEF	61	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62007	DEF	62	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62007	DEF	62	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62008	DEF	63	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62008	DEF	63	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62009	DEF	64	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62009	DEF	64	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62010	DEF	65	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62010	DEF	65	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62011	DEF	66	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62011	DEF	66	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62012	DEF	67	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62012	DEF	67	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62013	DEF	68	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62013	DEF	68	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62014	DEF	69	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62014	DEF	69	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62015	DEF	70	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62015	DEF	70	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62016	DEF	71	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62016	DEF	71	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62017	DEF	72	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62017	DEF	72	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62018	DEF	73	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62018	DEF	73	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62019	DEF	74	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62019	DEF	74	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62020	DEF	75	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62020	DEF	75	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62021	DEF	76	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62021	DEF	76	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62022	DEF	77	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62022	DEF	77	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62023	DEF	78	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62023	DEF	78	843093 Yukon Inc - 100%	2026-03-01	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 66779	DEF	79	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66779	DEF	79	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66780	DEF	80	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66780	DEF	80	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66781	DEF	81	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66781	DEF	81	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66782	DEF	82	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66782	DEF	82	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66783	DEF	83	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66783	DEF	83	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66784	DEF	84	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 66784	DEF	84	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 76954	DEF	85	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76954	DEF	85	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76955	DEF	86	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76955	DEF	86	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76956	DEF	87	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76956	DEF	87	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 76953	DEF	1379	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
Y 76953	DEF	1379	843093 Yukon Inc - 100%	2028-10-07	Active	115I11
YC65413	DEL	1	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65414	DEL	2	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65415	DEL	3	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65416	DEL	4	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65417	DEL	5	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65418	DEL	6	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65419	DEL	7	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65420	DEL	8	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65421	DEL	9	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65422	DEL	10	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65423	DEL	11	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65424	DEL	12	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65425	DEL	13	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65426	DEL	14	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65427	DEL	15	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65428	DEL	16	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65429	DEL	17	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65430	DEL	18	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65431	DEL	19	843093 Yukon Inc - 100%	2026-09-03	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC65432	DEL	20	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65433	DEL	21	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65434	DEL	22	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65435	DEL	23	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65436	DEL	24	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65437	DEL	25	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65438	DEL	26	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65439	DEL	27	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65440	DEL	28	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65441	DEL	29	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65442	DEL	30	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65443	DEL	31	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65444	DEL	32	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65445	DEL	33	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65446	DEL	34	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65447	DEL	35	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65448	DEL	36	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65449	DEL	37	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65450	DEL	38	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65451	DEL	39	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65452	DEL	40	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65453	DEL	41	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65454	DEL	42	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65455	DEL	43	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65456	DEL	44	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65457	DEL	45	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65458	DEL	46	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65459	DEL	47	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65460	DEL	48	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65461	DEL	49	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65462	DEL	50	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65463	DEL	51	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65464	DEL	52	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65465	DEL	53	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65466	DEL	54	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65467	DEL	55	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65468	DEL	56	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65469	DEL	57	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65470	DEL	58	843093 Yukon Inc - 100%	2026-09-03	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC65471	DEL	59	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65472	DEL	60	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65473	DEL	61	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65474	DEL	62	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65475	DEL	63	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65476	DEL	64	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65477	DEL	65	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65478	DEL	66	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65479	DEL	67	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65480	DEL	68	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65481	DEL	69	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65482	DEL	70	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65483	DEL	71	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65484	DEL	72	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65485	DEL	73	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65486	DEL	74	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65487	DEL	75	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65488	DEL	76	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65489	DEL	77	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65490	DEL	78	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65491	DEL	79	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65492	DEL	80	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65493	DEL	81	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65494	DEL	82	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65495	DEL	83	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65496	DEL	84	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65497	DEL	85	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65498	DEL	86	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC65499	DEL	87	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83114	DEL	88	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83115	DEL	89	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83116	DEL	90	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83117	DEL	91	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83118	DEL	92	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83119	DEL	93	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83120	DEL	94	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83121	DEL	95	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83122	DEL	96	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83123	DEL	97	843093 Yukon Inc - 100%	2026-09-03	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC83124	DEL	98	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83125	DEL	99	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83126	DEL	100	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83127	DEL	101	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83128	DEL	102	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83129	DEL	103	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83130	DEL	104	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83131	DEL	105	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83132	DEL	106	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83133	DEL	107	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83134	DEL	108	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83135	DEL	109	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83136	DEL	110	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83137	DEL	111	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83138	DEL	112	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YC83139	DEL	113	843093 Yukon Inc - 100%	2026-09-03	Active	115I07
YF72401	HUN	1	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72402	HUN	2	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72403	HUN	3	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72404	HUN	4	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72405	HUN	5	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72406	HUN	6	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72407	HUN	7	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72408	HUN	8	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72409	HUN	9	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72410	HUN	10	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72411	HUN	11	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72412	HUN	12	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72413	HUN	13	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72414	HUN	14	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72415	HUN	15	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72416	HUN	16	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72417	HUN	17	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72418	HUN	18	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72419	HUN	19	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72420	HUN	20	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72421	HUN	21	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72422	HUN	22	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72423	HUN	23	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72424	HUN	24	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72425	HUN	25	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72426	HUN	26	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72427	HUN	27	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72428	HUN	28	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72429	HUN	29	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72430	HUN	30	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72431	HUN	31	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72432	HUN	32	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72433	HUN	33	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72434	HUN	34	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72435	HUN	35	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72436	HUN	36	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72437	HUN	37	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72438	HUN	38	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72439	HUN	39	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72440	HUN	40	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72441	HUN	41	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72442	HUN	42	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72443	HUN	43	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72444	HUN	44	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72445	HUN	45	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72446	HUN	46	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72447	HUN	47	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72448	HUN	48	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72449	HUN	49	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72450	HUN	50	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72451	HUN	51	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72452	HUN	52	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72453	HUN	53	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72454	HUN	54	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72455	HUN	55	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72456	HUN	56	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72457	HUN	57	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72458	HUN	58	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72459	HUN	59	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72460	HUN	60	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72461	HUN	61	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72462	HUN	62	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72463	HUN	63	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72464	HUN	64	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72465	HUN	65	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72466	HUN	66	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72467	HUN	67	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72468	HUN	68	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72469	HUN	69	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72470	HUN	70	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72471	HUN	71	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72472	HUN	72	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72473	HUN	73	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72474	HUN	74	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72475	HUN	75	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72476	HUN	76	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72477	HUN	77	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72478	HUN	78	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72479	HUN	79	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72480	HUN	80	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72481	HUN	81	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72482	HUN	82	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72483	HUN	83	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72484	HUN	84	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72485	HUN	85	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72486	HUN	86	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72487	HUN	87	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72488	HUN	88	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72489	HUN	89	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72490	HUN	90	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72491	HUN	91	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72492	HUN	92	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72493	HUN	93	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72494	HUN	94	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72495	HUN	95	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72496	HUN	96	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72497	HUN	97	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72498	HUN	98	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72499	HUN	99	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72500	HUN	100	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72501	HUN	101	843093 Yukon Inc - 100%	2027-02-07	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72502	HUN	102	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72503	HUN	103	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72504	HUN	104	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72505	HUN	105	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72506	HUN	106	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72507	HUN	107	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72508	HUN	108	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72509	HUN	109	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72510	HUN	110	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72511	HUN	111	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72512	HUN	112	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72513	HUN	113	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72514	HUN	114	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72515	HUN	115	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72516	HUN	116	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72517	HUN	117	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72518	HUN	118	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72519	HUN	119	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72520	HUN	120	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72521	HUN	121	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72522	HUN	122	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72523	HUN	123	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72524	HUN	124	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72525	HUN	125	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72526	HUN	126	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72527	HUN	127	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72528	HUN	128	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72529	HUN	129	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72530	HUN	130	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72531	HUN	131	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72532	HUN	132	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72533	HUN	133	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72534	HUN	134	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72535	HUN	135	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72536	HUN	136	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72537	HUN	137	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72538	HUN	138	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72539	HUN	139	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72540	HUN	140	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72541	HUN	141	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72542	HUN	142	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72543	HUN	143	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72544	HUN	144	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72545	HUN	145	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72546	HUN	146	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72547	HUN	147	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72548	HUN	148	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72549	HUN	149	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72550	HUN	150	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72551	HUN	151	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72552	HUN	152	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72553	HUN	153	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72554	HUN	154	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72555	HUN	155	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72556	HUN	156	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72557	HUN	157	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72558	HUN	158	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72559	HUN	159	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72560	HUN	160	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72561	HUN	161	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72562	HUN	162	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72563	HUN	163	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72564	HUN	164	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72565	HUN	165	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72566	HUN	166	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72567	HUN	167	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72568	HUN	168	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72569	HUN	169	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72570	HUN	170	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72571	HUN	171	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72572	HUN	172	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72573	HUN	173	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72574	HUN	174	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72575	HUN	175	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72576	HUN	176	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72577	HUN	177	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72578	HUN	178	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72579	HUN	179	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72580	HUN	180	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72581	HUN	181	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72582	HUN	182	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72583	HUN	183	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72584	HUN	184	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72585	HUN	185	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72586	HUN	186	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72587	HUN	187	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72588	HUN	188	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72589	HUN	189	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72590	HUN	190	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72591	HUN	191	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72592	HUN	192	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72593	HUN	193	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72594	HUN	194	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72595	HUN	195	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72596	HUN	196	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72597	HUN	197	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72598	HUN	198	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72599	HUN	199	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72600	HUN	200	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72601	HUN	201	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72602	HUN	202	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72603	HUN	203	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72604	HUN	204	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72605	HUN	205	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72606	HUN	206	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72607	HUN	207	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72608	HUN	208	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72609	HUN	209	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72610	HUN	210	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72611	HUN	211	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72612	HUN	212	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72613	HUN	213	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72614	HUN	214	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72615	HUN	215	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72616	HUN	216	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72617	HUN	217	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72618	HUN	218	843093 Yukon Inc - 100%	2027-02-07	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72619	HUN	219	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72620	HUN	220	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72621	HUN	221	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72622	HUN	222	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72623	HUN	223	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72624	HUN	224	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72625	HUN	225	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72626	HUN	226	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72627	HUN	227	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72628	HUN	228	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72629	HUN	229	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72630	HUN	230	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72631	HUN	231	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72632	HUN	232	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72633	HUN	233	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72634	HUN	234	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72635	HUN	235	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72636	HUN	236	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72637	HUN	237	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72638	HUN	238	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72639	HUN	239	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72640	HUN	240	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72641	HUN	241	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72642	HUN	242	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72643	HUN	243	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72644	HUN	244	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72645	HUN	245	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72646	HUN	246	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72647	HUN	247	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72648	HUN	248	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72649	HUN	249	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72650	HUN	250	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72651	HUN	251	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72652	HUN	252	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72653	HUN	253	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72654	HUN	254	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72655	HUN	255	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72656	HUN	256	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72657	HUN	257	843093 Yukon Inc - 100%	2027-02-07	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72658	HUN	258	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72659	HUN	259	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72660	HUN	260	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72661	HUN	261	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72662	HUN	262	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72663	HUN	263	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72664	HUN	264	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72665	HUN	265	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72666	HUN	266	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72667	HUN	267	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72668	HUN	268	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72669	HUN	269	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72670	HUN	270	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72671	HUN	271	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72672	HUN	272	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72673	HUN	273	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72674	HUN	274	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72675	HUN	275	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72676	HUN	276	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72677	HUN	277	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72678	HUN	278	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72679	HUN	279	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72680	HUN	280	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72681	HUN	281	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72682	HUN	282	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72683	HUN	283	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72684	HUN	284	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72685	HUN	285	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72686	HUN	286	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72687	HUN	287	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72688	HUN	288	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72689	HUN	289	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72690	HUN	290	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72691	HUN	291	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72692	HUN	292	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72693	HUN	293	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72694	HUN	294	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72695	HUN	295	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72696	HUN	296	843093 Yukon Inc - 100%	2027-02-07	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72697	HUN	297	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72698	HUN	298	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72699	HUN	299	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72700	HUN	300	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72701	HUN	301	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72702	HUN	302	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72703	HUN	303	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72704	HUN	304	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72705	HUN	305	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72706	HUN	306	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72707	HUN	307	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72708	HUN	308	843093 Yukon Inc - 100%	2027-02-07	Active	115I07
YF72709	HUN	309	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72710	HUN	310	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72711	HUN	311	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72712	HUN	312	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72713	HUN	313	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72714	HUN	314	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72715	HUN	315	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72716	HUN	316	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72717	HUN	317	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72718	HUN	318	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72719	HUN	319	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72720	HUN	320	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72721	HUN	321	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72722	HUN	322	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72723	HUN	323	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72724	HUN	324	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72725	HUN	325	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72726	HUN	326	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72727	HUN	327	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72728	HUN	328	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72729	HUN	329	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72730	HUN	330	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72731	HUN	331	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72732	HUN	332	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72733	HUN	333	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72734	HUN	334	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72735	HUN	335	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72736	HUN	336	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72737	HUN	337	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72738	HUN	338	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72739	HUN	339	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72740	HUN	340	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72741	HUN	341	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72742	HUN	342	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72743	HUN	343	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72744	HUN	344	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72745	HUN	345	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72746	HUN	346	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72747	HUN	347	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72748	HUN	348	843093 Yukon Inc - 100%	2027-02-07	Active	115I11
YF72749	HUN	349	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72750	HUN	350	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72751	HUN	351	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72752	HUN	352	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72753	HUN	353	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72754	HUN	354	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72755	HUN	355	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72756	HUN	356	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72757	HUN	357	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72758	HUN	358	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72759	HUN	359	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72760	HUN	360	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72761	HUN	361	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72762	HUN	362	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72763	HUN	363	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72764	HUN	364	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72765	HUN	365	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72766	HUN	366	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72767	HUN	367	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72768	HUN	368	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72769	HUN	369	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72770	HUN	370	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72771	HUN	371	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72772	HUN	372	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72773	HUN	373	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72774	HUN	374	843093 Yukon Inc - 100%	2027-02-07	Active	115I06

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72775	HUN	375	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72776	HUN	376	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72777	HUN	377	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72778	HUN	378	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72779	HUN	379	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72780	HUN	380	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72781	HUN	381	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72782	HUN	382	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72783	HUN	383	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72784	HUN	384	843093 Yukon Inc - 100%	2027-02-07	Active	115I06
YF72785	HUN	385	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72786	HUN	386	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72787	HUN	387	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72788	HUN	388	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72789	HUN	389	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72790	HUN	390	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72791	HUN	391	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72792	HUN	392	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72793	HUN	393	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72794	HUN	394	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72795	HUN	395	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72796	HUN	396	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72797	HUN	397	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72798	HUN	398	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72799	HUN	399	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72800	HUN	400	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72801	HUN	401	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72802	HUN	402	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72803	HUN	403	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72804	HUN	404	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72805	HUN	405	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72806	HUN	406	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72807	HUN	407	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72808	HUN	408	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72809	HUN	409	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72810	HUN	410	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72811	HUN	411	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72812	HUN	412	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72813	HUN	413	843093 Yukon Inc - 100%	2026-02-07	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72814	HUN	414	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72815	HUN	415	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72816	HUN	416	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72817	HUN	417	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72818	HUN	418	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72819	HUN	419	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72820	HUN	420	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72821	HUN	421	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72822	HUN	422	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72823	HUN	423	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72824	HUN	424	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72825	HUN	425	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72826	HUN	426	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72827	HUN	427	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72828	HUN	428	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72829	HUN	429	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72830	HUN	430	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72831	HUN	431	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72832	HUN	432	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72833	HUN	433	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72834	HUN	434	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72835	HUN	435	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72836	HUN	436	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72837	HUN	437	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72838	HUN	438	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72839	HUN	439	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72840	HUN	440	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72841	HUN	441	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72842	HUN	442	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72843	HUN	443	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72844	HUN	444	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72845	HUN	445	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72846	HUN	446	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72847	HUN	447	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72848	HUN	448	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72849	HUN	449	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72850	HUN	450	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72851	HUN	451	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72852	HUN	452	843093 Yukon Inc - 100%	2026-02-07	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YF72853	HUN	453	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72854	HUN	454	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72855	HUN	455	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72856	HUN	456	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72857	HUN	457	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72858	HUN	458	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72859	HUN	459	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72860	HUN	460	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72861	HUN	461	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72862	HUN	462	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72863	HUN	463	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72864	HUN	464	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72865	HUN	465	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72866	HUN	466	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72867	HUN	467	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72868	HUN	468	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72869	HUN	469	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72870	HUN	470	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72871	HUN	471	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72872	HUN	472	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72873	HUN	473	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72874	HUN	474	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72875	HUN	475	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72876	HUN	476	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72877	HUN	477	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72878	HUN	478	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72879	HUN	479	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72880	HUN	480	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72881	HUN	481	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72882	HUN	482	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72883	HUN	483	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72884	HUN	484	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72885	HUN	485	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YF72886	HUN	486	843093 Yukon Inc - 100%	2026-02-07	Active	115I11
YC46784	ICE	1	843093 Yukon Inc - 100%	2026-04-12	Active	115I07
YC46785	ICE	2	843093 Yukon Inc - 100%	2026-04-12	Active	115I07
YC46786	ICE	3	843093 Yukon Inc - 100%	2026-04-12	Active	115I07
YC46787	ICE	4	843093 Yukon Inc - 100%	2026-04-12	Active	115I07
YC54407	ICE	5	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC54408	ICE	6	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54409	ICE	7	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54410	ICE	8	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54411	ICE	9	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54412	ICE	10	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54413	ICE	11	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54414	ICE	12	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54415	ICE	13	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54416	ICE	14	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54417	ICE	15	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54418	ICE	16	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54419	ICE	17	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54420	ICE	18	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54421	ICE	19	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54422	ICE	20	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54423	ICE	21	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54424	ICE	22	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54425	ICE	23	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54426	ICE	24	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54427	ICE	25	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54428	ICE	26	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54429	ICE	27	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54430	ICE	28	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54431	ICE	29	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54432	ICE	30	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54433	ICE	31	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54434	ICE	32	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54435	ICE	33	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54436	ICE	34	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54437	ICE	35	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54438	ICE	36	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54439	ICE	37	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54440	ICE	38	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54441	ICE	39	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54442	ICE	40	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54443	ICE	41	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC41194	MEL	8	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC47256	MEL	33	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC47257	MEL	34	843093 Yukon Inc - 100%	2026-02-23	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC47258	MEL	35	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC47259	MEL	36	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC47260	MEL	37	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC47261	MEL	38	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41244	MEL	58	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41246	MEL	60	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41247	MEL	61	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41283	MEL	97	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41285	MEL	99	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41286	MEL	100	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41287	MEL	101	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41288	MEL	102	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41290	MEL	104	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
YC41292	MEL	106	843093 Yukon Inc - 100%	2026-02-23	Active	115I11
Y 61620	MIINTO	1	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61620	MIINTO	1	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61621	MIINTO	2	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61621	MIINTO	2	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61622	MIINTO	3	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61622	MIINTO	3	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61623	MIINTO	4	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61623	MIINTO	4	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61624	MIINTO	5	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61624	MIINTO	5	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61625	MIINTO	6	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61625	MIINTO	6	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61626	MIINTO	7	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61626	MIINTO	7	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61627	MIINTO	8	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61627	MIINTO	8	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61628	MIINTO	9	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61628	MIINTO	9	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61629	MIINTO	10	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61629	MIINTO	10	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61630	MIINTO	11	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61630	MIINTO	11	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61631	MIINTO	12	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61631	MIINTO	12	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61632	MIINTO	13	843093 Yukon Inc - 100%	2039-05-13	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61632	MIINTO	13	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61633	MIINTO	14	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61633	MIINTO	14	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61634	MIINTO	15	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61634	MIINTO	15	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61635	MIINTO	16	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61635	MIINTO	16	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61904	MIINTO	17	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61904	MIINTO	17	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61905	MIINTO	18	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61905	MIINTO	18	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61906	MIINTO	19	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61906	MIINTO	19	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61907	MIINTO	20	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61907	MIINTO	20	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61914	MIINTO	23	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61914	MIINTO	23	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61915	MIINTO	24	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61915	MIINTO	24	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61916	MIINTO	25	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61916	MIINTO	25	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61917	MIINTO	26	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61917	MIINTO	26	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61918	MIINTO	27	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61918	MIINTO	27	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61919	MIINTO	28	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61919	MIINTO	28	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61932	MIINTO	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61932	MIINTO	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61932	MIINTO	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61932	MIINTO	29	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61933	MIINTO	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61933	MIINTO	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61933	MIINTO	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61933	MIINTO	30	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61920	MIINTO	31	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61920	MIINTO	31	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61921	MIINTO	32	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61921	MIINTO	32	843093 Yukon Inc - 100%	2039-05-13	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61922	MIINTO	33	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61922	MIINTO	33	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61923	MIINTO	34	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61923	MIINTO	34	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61908	MIINTO	35	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61908	MIINTO	35	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61909	MIINTO	36	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61909	MIINTO	36	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61910	MIINTO	37	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61910	MIINTO	37	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61911	MIINTO	38	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61911	MIINTO	38	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61926	MIINTO	41	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61926	MIINTO	41	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61926	MIINTO	41	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61927	MIINTO	42	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61927	MIINTO	42	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61928	MIINTO	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61928	MIINTO	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61928	MIINTO	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61928	MIINTO	43	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61929	MIINTO	44	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61929	MIINTO	44	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 61930	MIINTO	45	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61930	MIINTO	45	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61930	MIINTO	45	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61930	MIINTO	45	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61931	MIINTO	46	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61931	MIINTO	46	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61931	MIINTO	46	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61931	MIINTO	46	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61934	MIINTO	47	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61934	MIINTO	47	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61934	MIINTO	47	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61934	MIINTO	47	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61935	MIINTO	48	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61935	MIINTO	48	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61936	MIINTO	49	843093 Yukon Inc - 100%	2039-05-13	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 61936	MIINTO	49	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61936	MIINTO	49	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61936	MIINTO	49	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61937	MIINTO	50	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61937	MIINTO	50	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61937	MIINTO	50	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61937	MIINTO	50	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61938	MIINTO	51	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61938	MIINTO	51	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61938	MIINTO	51	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61938	MIINTO	51	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61939	MIINTO	52	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 61939	MIINTO	52	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62296	MIINTO	65	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62296	MIINTO	65	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62297	MIINTO	66	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62297	MIINTO	66	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62298	MIINTO	67	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62298	MIINTO	67	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62299	MIINTO	68	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62299	MIINTO	68	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62300	MIINTO	69	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62300	MIINTO	69	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62301	MIINTO	70	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62301	MIINTO	70	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62302	MIINTO	71	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62302	MIINTO	71	843093 Yukon Inc - 100%	2039-05-13	Active	115I11
Y 62303	MIINTO	72	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62303	MIINTO	72	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62304	MIINTO	73	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62304	MIINTO	73	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62305	MIINTO	75	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62305	MIINTO	75	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62306	MIINTO	76	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62306	MIINTO	76	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62307	MIINTO	77	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62307	MIINTO	77	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62308	MIINTO	78	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62308	MIINTO	78	843093 Yukon Inc - 100%	2026-03-01	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
Y 62309	MINTO	79	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62309	MINTO	79	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62310	MIINTO	80	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62310	MIINTO	80	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62311	MIINTO	81	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62311	MIINTO	81	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62312	MIINTO	82	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62312	MIINTO	82	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62313	MIINTO	83	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62313	MIINTO	83	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62314	MIINTO	84	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62314	MIINTO	84	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62315	MIINTO	85	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62315	MIINTO	85	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62316	MIINTO	86	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62316	MIINTO	86	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62317	MIINTO	87	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62317	MIINTO	87	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62318	MIINTO	88	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62318	MIINTO	88	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62319	MIINTO	89	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 62319	MIINTO	89	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 77310	MIINTO	94	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 77310	MIINTO	94	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 77311	MIINTO	95	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 77311	MIINTO	95	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 78024	MIINTO	96	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 78024	MIINTO	96	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 78025	MIINTO	97	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
Y 78025	MIINTO	97	843093 Yukon Inc - 100%	2026-03-01	Active	115I11
YC46710	PEPPER	1	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46711	PEPPER	2	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46712	PEPPER	3	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46713	PEPPER	4	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46714	PEPPER	5	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46715	PEPPER	6	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46716	PEPPER	7	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46717	PEPPER	8	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46718	PEPPER	9	843093 Yukon Inc - 100%	2026-04-04	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC46719	PEPPER	10	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46720	PEPPER	11	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC46721	PEPPER	12	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66520	PEPPER	13	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66521	PEPPER	14	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66522	PEPPER	15	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66523	PEPPER	16	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66524	PEPPER	17	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66525	PEPPER	18	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66526	PEPPER	19	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66527	PEPPER	20	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66528	PEPPER	21	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66529	PEPPER	22	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66530	PEPPER	23	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66531	PEPPER	24	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66532	PEPPER	25	843093 Yukon Inc - 100%	2026-04-04	Active	115I12
YC66533	PEPPER	26	843093 Yukon Inc - 100%	2026-04-04	Active	115I12
YC66534	PEPPER	27	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66535	PEPPER	28	843093 Yukon Inc - 100%	2026-04-04	Active	115I11
YC66536	PEPPER	29	843093 Yukon Inc - 100%	2026-04-04	Active	115I14
YC66537	PEPPER	30	843093 Yukon Inc - 100%	2026-04-04	Active	115I14
YC66538	PEPPER	31	843093 Yukon Inc - 100%	2026-04-04	Active	115I14
YC66539	PEPPER	32	843093 Yukon Inc - 100%	2026-04-04	Active	115I14
YC60134	SLEEP	13	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60135	SLEEP	14	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60136	SLEEP	15	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60137	SLEEP	16	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60138	SLEEP	17	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC60139	SLEEP	18	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC46628	TOE	1	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46629	TOE	2	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46630	TOE	3	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46631	TOE	4	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46632	TOE	5	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46633	TOE	6	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46634	TOE	7	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46635	TOE	8	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46636	TOE	9	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46637	TOE	10	843093 Yukon Inc - 100%	2026-03-20	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC46638	TOE	11	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46639	TOE	12	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46640	TOE	13	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46641	TOE	14	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46642	TOE	15	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46643	TOE	16	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46644	TOE	17	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46645	TOE	18	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46646	TOE	19	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46647	TOE	20	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46648	TOE	21	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46649	TOE	22	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46650	TOE	23	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46651	TOE	24	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46674	TOE	25	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46675	TOE	26	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46676	TOE	27	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46677	TOE	28	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46678	TOE	29	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46679	TOE	30	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46680	TOE	31	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46681	TOE	32	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46682	TOE	33	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46683	TOE	34	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46684	TOE	35	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46685	TOE	36	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46686	TOE	37	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46687	TOE	38	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46688	TOE	39	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46689	TOE	40	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46690	TOE	41	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46691	TOE	42	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46692	TOE	43	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46693	TOE	44	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46694	TOE	45	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46695	TOE	46	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46696	TOE	47	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46697	TOE	48	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46698	TOE	49	843093 Yukon Inc - 100%	2026-03-20	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC46699	TOE	50	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46700	TOE	51	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46701	TOE	52	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46702	TOE	53	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46703	TOE	54	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46704	TOE	55	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46705	TOE	56	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46706	TOE	57	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46707	TOE	58	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46708	TOE	59	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46709	TOE	60	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66548	TOE	61	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66549	TOE	62	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66550	TOE	63	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66551	TOE	64	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66552	TOE	65	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66553	TOE	66	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66554	TOE	67	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66555	TOE	68	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66556	TOE	69	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66557	TOE	70	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66558	TOE	71	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66559	TOE	72	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66560	TOE	73	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66561	TOE	74	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66562	TOE	75	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC66563	TOE	76	843093 Yukon Inc - 100%	2026-03-20	Active	115I11
YC46794	WINTER	1	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46795	WINTER	2	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46796	WINTER	3	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46797	WINTER	4	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46798	WINTER	5	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46799	WINTER	6	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46800	WINTER	7	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46801	WINTER	8	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46802	WINTER	9	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46803	WINTER	10	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46804	WINTER	11	843093 Yukon Inc - 100%	2026-04-12	Active	115I11
YC46805	WINTER	12	843093 Yukon Inc - 100%	2026-04-12	Active	115I11

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC53521	WS	1	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53522	WS	2	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53523	WS	3	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53524	WS	4	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53525	WS	5	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53526	WS	6	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53527	WS	7	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53528	WS	8	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53529	WS	9	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53530	WS	10	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53531	WS	11	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53532	WS	12	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53533	WS	13	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53534	WS	14	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53535	WS	15	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53536	WS	16	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53537	WS	17	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53538	WS	18	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53539	WS	19	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53540	WS	20	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53541	WS	21	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53542	WS	22	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53543	WS	23	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53544	WS	24	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53545	WS	25	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53546	WS	26	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53547	WS	27	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53548	WS	28	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53549	WS	29	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53550	WS	30	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53551	WS	31	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53552	WS	32	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53553	WS	33	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53554	WS	34	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53555	WS	35	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53556	WS	36	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53557	WS	37	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53558	WS	38	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53559	WS	39	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC53560	WS	40	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53561	WS	41	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53562	WS	42	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53563	WS	43	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53564	WS	44	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53565	WS	45	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53566	WS	46	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53567	WS	47	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53568	WS	48	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53569	WS	49	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53570	WS	50	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53571	WS	51	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53572	WS	52	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53573	WS	53	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53574	WS	54	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53575	WS	55	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53576	WS	56	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53577	WS	57	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53578	WS	58	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53579	WS	59	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53580	WS	60	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53581	WS	61	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53582	WS	62	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53583	WS	63	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53584	WS	64	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53585	WS	65	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53586	WS	66	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53587	WS	67	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53588	WS	68	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53589	WS	69	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53590	WS	70	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53591	WS	71	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53592	WS	72	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53593	WS	73	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53594	WS	74	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53595	WS	75	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53596	WS	76	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53597	WS	77	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53598	WS	78	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC53599	WS	79	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53600	WS	80	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53601	WS	81	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53602	WS	82	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53748	WS	83	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53749	WS	84	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53750	WS	85	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53751	WS	86	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53752	WS	87	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53753	WS	88	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53754	WS	89	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53755	WS	90	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53756	WS	91	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53757	WS	92	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53758	WS	93	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53759	WS	94	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53760	WS	95	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53761	WS	96	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53762	WS	97	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53763	WS	98	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53764	WS	99	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53765	WS	100	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53766	WS	101	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53767	WS	102	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53768	WS	103	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53769	WS	104	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53770	WS	105	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53771	WS	106	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53772	WS	107	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53773	WS	108	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53774	WS	109	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53775	WS	110	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53776	WS	111	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53777	WS	112	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53778	WS	113	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53779	WS	114	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53780	WS	115	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53781	WS	116	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53782	WS	117	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC53783	WS	118	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53784	WS	119	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53785	WS	120	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53786	WS	121	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53787	WS	122	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53788	WS	123	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53789	WS	124	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53790	WS	125	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53791	WS	126	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53792	WS	127	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53793	WS	128	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53794	WS	129	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53795	WS	130	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53796	WS	131	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53797	WS	132	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53798	WS	133	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53799	WS	134	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53800	WS	135	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53801	WS	136	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53802	WS	137	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53803	WS	138	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53804	WS	139	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53805	WS	140	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53806	WS	141	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53807	WS	142	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53808	WS	143	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53809	WS	144	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53810	WS	145	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53811	WS	146	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53812	WS	147	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53813	WS	148	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53814	WS	149	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53815	WS	150	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53816	WS	151	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53817	WS	152	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53818	WS	153	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53819	WS	154	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53820	WS	155	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC53821	WS	156	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC53993	WS	157	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53994	WS	158	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53995	WS	159	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53996	WS	160	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53997	WS	161	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53998	WS	162	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC53999	WS	163	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54000	WS	164	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54001	WS	165	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54002	WS	166	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54003	WS	167	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54004	WS	168	843093 Yukon Inc - 100%	2026-04-02	Active	115I06
YC54005	WS	169	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54006	WS	170	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54007	WS	171	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54008	WS	172	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54009	WS	173	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54010	WS	174	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54011	WS	175	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54012	WS	176	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54013	WS	177	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54014	WS	178	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54015	WS	179	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54016	WS	180	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54017	WS	181	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54018	WS	182	843093 Yukon Inc - 100%	2026-04-02	Active	115I05
YC54019	WS	183	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54020	WS	184	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54021	WS	185	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54022	WS	186	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54023	WS	187	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54024	WS	188	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54025	WS	189	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54026	WS	190	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54027	WS	191	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54028	WS	192	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54029	WS	193	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54030	WS	194	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC54031	WS	195	843093 Yukon Inc - 100%	2026-04-02	Active	115I07

Grant #	Claim Name	Claim #	Claim owner	Claim Expiry Date	Status	NTS Map Number
YC54032	WS	196	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91789	WS	197	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91790	WS	198	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91791	WS	199	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91792	WS	200	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91793	WS	201	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91794	WS	202	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91795	WS	203	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91796	WS	204	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91797	WS	205	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91798	WS	206	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91799	WS	207	843093 Yukon Inc - 100%	2026-04-02	Active	115I07
YC91800	WS	208	843093 Yukon Inc - 100%	2026-04-02	Active	115I07